12n
0375
(K12n
0375
)
A knot diagram
1
Linearized knot diagam
3 6 8 9 2 11 3 12 5 6 9 7
Solving Sequence
2,6 3,10
11 7 8 1 5 9 4 12
c
2
c
10
c
6
c
7
c
1
c
5
c
9
c
4
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h339u
19
3935u
18
+ ··· + 809b + 2456, 1439u
19
+ 6826u
18
+ ··· + 2427a + 13155,
u
20
8u
19
+ ··· + 12u 3i
I
u
2
= h−u
9
a 9u
9
+ ··· a 15, 5u
9
a u
9
+ ··· 7a 3,
u
10
+ 2u
9
+ u
8
3u
7
2u
6
+ 2u
5
+ 3u
4
2u
3
u
2
+ 2u + 1i
I
u
3
= h2u
10
+ 9u
9
+ 14u
8
+ u
7
24u
6
23u
5
+ 11u
4
+ 29u
3
+ 7u
2
+ b 13u 5,
3u
10
14u
9
22u
8
+ 42u
6
+ 38u
5
22u
4
50u
3
9u
2
+ a + 24u + 7,
u
11
+ 5u
10
+ 9u
9
+ 3u
8
13u
7
17u
6
+ 2u
5
+ 18u
4
+ 9u
3
6u
2
5u 1i
I
u
4
= hb
2
+ b 1, a + 1, u 1i
I
v
1
= ha, b + 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h339u
19
3935u
18
+ · · · + 809b + 2456, 1439u
19
+ 6826u
18
+ · · · +
2427a + 13155, u
20
8u
19
+ · · · + 12u 3i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
0.592913u
19
2.81253u
18
+ ··· + 12.5904u 5.42027
0.419036u
19
+ 4.86403u
18
+ ··· + 14.5278u 3.03585
a
11
=
0.592913u
19
2.81253u
18
+ ··· + 12.5904u 5.42027
1.53276u
19
10.3375u
18
+ ··· 6.86279u + 2.75649
a
7
=
1.20231u
19
+ 7.31685u
18
+ ··· 4.78451u + 3.02596
1.03585u
19
+ 7.02967u
18
+ ··· + 3.81211u 0.846724
a
8
=
2.01937u
19
+ 15.3379u
18
+ ··· + 15.4157u 3.03214
2.30161u
19
16.5600u
18
+ ··· 16.4536u + 3.60692
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
9
=
0.918830u
19
+ 5.81788u
18
+ ··· + 10.5979u 4.16316
1.93078u
19
+ 13.4944u
18
+ ··· + 12.5352u 1.77874
a
4
=
0.952616u
19
+ 6.38607u
18
+ ··· + 9.11042u 2.28307
0.817058u
19
8.02101u
18
+ ··· 20.2002u + 6.05810
a
12
=
0.753605u
19
5.80758u
18
+ ··· 4.77421u + 2.27194
1.60939u
19
+ 12.5043u
18
+ ··· + 19.8059u 5.39431
(ii) Obstruction class = 1
(iii) Cusp Shapes =
277
809
u
19
+
4609
809
u
18
+ ··· +
33642
809
u
32682
809
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 8u
19
+ ··· + 150u + 9
c
2
, c
5
u
20
+ 8u
19
+ ··· 12u 3
c
3
, c
7
u
20
2u
19
+ ··· + u + 1
c
4
, c
9
u
20
8u
18
+ ··· + 3u + 1
c
6
, c
10
u
20
+ 6u
18
+ ··· + 9u + 1
c
8
, c
11
u
20
7u
19
+ ··· + 12u 3
c
12
u
20
+ 21u
19
+ ··· + 6656u + 512
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 16y
19
+ ··· 5202y + 81
c
2
, c
5
y
20
8y
19
+ ··· 150y + 9
c
3
, c
7
y
20
28y
19
+ ··· + 7y + 1
c
4
, c
9
y
20
16y
19
+ ··· + 5y + 1
c
6
, c
10
y
20
+ 12y
19
+ ··· 21y + 1
c
8
, c
11
y
20
+ 11y
19
+ ··· 132y + 9
c
12
y
20
9y
19
+ ··· 2621440y + 262144
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.739766 + 0.810627I
a = 0.332052 0.863055I
b = 1.178040 0.181845I
1.201950 + 0.670281I 8.29063 + 0.06466I
u = 0.739766 0.810627I
a = 0.332052 + 0.863055I
b = 1.178040 + 0.181845I
1.201950 0.670281I 8.29063 0.06466I
u = 0.579374 + 0.935372I
a = 1.121180 0.363583I
b = 0.996152 + 0.778841I
6.00051 2.90762I 6.41870 + 3.35662I
u = 0.579374 0.935372I
a = 1.121180 + 0.363583I
b = 0.996152 0.778841I
6.00051 + 2.90762I 6.41870 3.35662I
u = 0.725363
a = 0.248162
b = 0.655437
1.32826 7.40410
u = 0.641694 + 0.281021I
a = 1.66993 0.14677I
b = 0.666818 0.229080I
2.15316 + 3.41819I 1.21797 1.44999I
u = 0.641694 0.281021I
a = 1.66993 + 0.14677I
b = 0.666818 + 0.229080I
2.15316 3.41819I 1.21797 + 1.44999I
u = 1.009590 + 0.838851I
a = 1.119650 + 0.309640I
b = 1.50399 1.02071I
1.88231 6.91835I 9.67007 + 4.45150I
u = 1.009590 0.838851I
a = 1.119650 0.309640I
b = 1.50399 + 1.02071I
1.88231 + 6.91835I 9.67007 4.45150I
u = 0.522186 + 0.274434I
a = 0.715817 + 0.493479I
b = 0.035362 0.930126I
0.818282 1.020500I 8.50734 + 6.76581I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.522186 0.274434I
a = 0.715817 0.493479I
b = 0.035362 + 0.930126I
0.818282 + 1.020500I 8.50734 6.76581I
u = 0.82856 + 1.18903I
a = 0.665734 + 0.836247I
b = 1.275630 + 0.188413I
1.33376 + 6.29384I 5.85142 3.79279I
u = 0.82856 1.18903I
a = 0.665734 0.836247I
b = 1.275630 0.188413I
1.33376 6.29384I 5.85142 + 3.79279I
u = 1.28182 + 0.74255I
a = 0.465354 + 0.427519I
b = 1.176510 + 0.070724I
3.78911 3.43912I 5.47667 + 2.61689I
u = 1.28182 0.74255I
a = 0.465354 0.427519I
b = 1.176510 0.070724I
3.78911 + 3.43912I 5.47667 2.61689I
u = 1.14224 + 0.95656I
a = 1.149420 0.323355I
b = 1.65497 + 0.80309I
0.28633 13.95250I 7.83055 + 7.44247I
u = 1.14224 0.95656I
a = 1.149420 + 0.323355I
b = 1.65497 0.80309I
0.28633 + 13.95250I 7.83055 7.44247I
u = 1.65206 + 0.05162I
a = 0.199755 0.409902I
b = 0.127470 0.253935I
9.08165 + 2.30266I 5.04461 + 4.85763I
u = 1.65206 0.05162I
a = 0.199755 + 0.409902I
b = 0.127470 + 0.253935I
9.08165 2.30266I 5.04461 4.85763I
u = 0.344930
a = 2.91630
b = 0.747935
1.47402 6.85190
6
II.
I
u
2
= h−u
9
a9u
9
+· · ·a15, 5u
9
au
9
+· · ·7a3, u
10
+ 2 u
9
+· · ·+2u+1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
a
1
2
u
9
a +
9
2
u
9
+ ··· +
1
2
a +
15
2
a
11
=
a
1
2
u
9
a +
9
2
u
9
+ ··· +
1
2
a +
15
2
a
7
=
3u
9
a + u
9
+ ··· + 5a + 1
1
2
u
9
a +
1
2
u
9
+ ···
1
2
a
1
2
a
8
=
9
2
u
9
a +
1
2
u
9
+ ··· +
15
2
a +
3
2
1
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
9
=
1
2
u
9
a
3
2
u
9
+ ··· +
1
2
a
5
2
3u
9
+ 4u
8
9u
6
+ u
5
+ 7u
4
+ 4u
3
+ au 10u
2
+ 3u + 5
a
4
=
6u
9
a + u
9
+ ··· + 10a + 2
3
2
u
9
a
1
2
u
9
+ ··· +
5
2
a +
1
2
a
12
=
3u
9
a + u
9
+ ··· + 5a + 2
1
2
u
9
a +
1
2
u
9
+ ···
1
2
a
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
9
17u
8
+ 37u
6
+ 3u
5
35u
4
20u
3
+ 38u
2
3u 35
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
10
+ 2u
9
+ 9u
8
+ 15u
7
+ 28u
6
+ 36u
5
+ 35u
4
+ 22u
3
+ 15u
2
+ 6u + 1)
2
c
2
, c
5
(u
10
2u
9
+ u
8
+ 3u
7
2u
6
2u
5
+ 3u
4
+ 2u
3
u
2
2u + 1)
2
c
3
, c
7
u
20
+ 2u
19
+ ··· 19u + 61
c
4
, c
9
u
20
6u
18
+ ··· 15u + 85
c
6
, c
10
u
20
3u
19
+ ··· 108u + 59
c
8
, c
11
(u
10
+ 3u
9
+ 6u
8
+ 7u
7
+ 9u
6
+ 9u
5
+ 10u
4
+ 6u
3
+ 5u
2
+ 3u + 2)
2
c
12
(u 1)
20
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ 14y
9
+ ··· 6y + 1)
2
c
2
, c
5
(y
10
2y
9
+ 9y
8
15y
7
+ 28y
6
36y
5
+ 35y
4
22y
3
+ 15y
2
6y + 1)
2
c
3
, c
7
y
20
12y
19
+ ··· 40987y + 3721
c
4
, c
9
y
20
12y
19
+ ··· 97975y + 7225
c
6
, c
10
y
20
+ 13y
19
+ ··· + 76246y + 3481
c
8
, c
11
(y
10
+ 3y
9
+ ··· + 11y + 4)
2
c
12
(y 1)
20
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.975430 + 0.320615I
a = 1.065150 + 0.247050I
b = 1.63832 + 0.24814I
3.87176 + 0.60085I 13.31849 3.40041I
u = 0.975430 + 0.320615I
a = 0.880921 0.910530I
b = 0.559442 0.182706I
3.87176 + 0.60085I 13.31849 3.40041I
u = 0.975430 0.320615I
a = 1.065150 0.247050I
b = 1.63832 0.24814I
3.87176 0.60085I 13.31849 + 3.40041I
u = 0.975430 0.320615I
a = 0.880921 + 0.910530I
b = 0.559442 + 0.182706I
3.87176 0.60085I 13.31849 + 3.40041I
u = 0.541733 + 0.670646I
a = 1.294850 0.350726I
b = 1.70668 0.48449I
2.20007 4.58635I 7.79322 + 7.42430I
u = 0.541733 + 0.670646I
a = 0.49398 + 2.09684I
b = 0.312809 + 0.203725I
2.20007 4.58635I 7.79322 + 7.42430I
u = 0.541733 0.670646I
a = 1.294850 + 0.350726I
b = 1.70668 + 0.48449I
2.20007 + 4.58635I 7.79322 7.42430I
u = 0.541733 0.670646I
a = 0.49398 2.09684I
b = 0.312809 0.203725I
2.20007 + 4.58635I 7.79322 7.42430I
u = 0.876556 + 1.026090I
a = 0.533352 + 0.614318I
b = 1.129040 0.385187I
6.17677 + 1.75340I 6.60526 + 0.85033I
u = 0.876556 + 1.026090I
a = 1.221340 0.556605I
b = 1.54773 + 0.26490I
6.17677 + 1.75340I 6.60526 + 0.85033I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.876556 1.026090I
a = 0.533352 0.614318I
b = 1.129040 + 0.385187I
6.17677 1.75340I 6.60526 0.85033I
u = 0.876556 1.026090I
a = 1.221340 + 0.556605I
b = 1.54773 0.26490I
6.17677 1.75340I 6.60526 0.85033I
u = 0.580680 + 0.133301I
a = 0.062064 + 0.507460I
b = 0.18768 + 2.50740I
4.85763 + 3.93250I 20.2791 6.7139I
u = 0.580680 + 0.133301I
a = 1.04621 + 3.04432I
b = 0.411614 1.128030I
4.85763 + 3.93250I 20.2791 6.7139I
u = 0.580680 0.133301I
a = 0.062064 0.507460I
b = 0.18768 2.50740I
4.85763 3.93250I 20.2791 + 6.7139I
u = 0.580680 0.133301I
a = 1.04621 3.04432I
b = 0.411614 + 1.128030I
4.85763 3.93250I 20.2791 + 6.7139I
u = 1.059930 + 0.922349I
a = 0.797570 0.248575I
b = 1.51824 + 0.58719I
5.57516 + 5.36397I 8.50388 6.50559I
u = 1.059930 + 0.922349I
a = 0.993922 + 0.803452I
b = 1.53472 0.22114I
5.57516 + 5.36397I 8.50388 6.50559I
u = 1.059930 0.922349I
a = 0.797570 + 0.248575I
b = 1.51824 0.58719I
5.57516 5.36397I 8.50388 + 6.50559I
u = 1.059930 0.922349I
a = 0.993922 0.803452I
b = 1.53472 + 0.22114I
5.57516 5.36397I 8.50388 + 6.50559I
11
III.
I
u
3
= h2u
10
+9u
9
+· · ·+b5, 3u
10
14u
9
+· · ·+a+7, u
11
+5u
10
+· · ·5u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
3u
10
+ 14u
9
+ 22u
8
42u
6
38u
5
+ 22u
4
+ 50u
3
+ 9u
2
24u 7
2u
10
9u
9
+ ··· + 13u + 5
a
11
=
3u
10
+ 14u
9
+ 22u
8
42u
6
38u
5
+ 22u
4
+ 50u
3
+ 9u
2
24u 7
2u
10
9u
9
+ ··· + 11u + 4
a
7
=
u
10
+ 5u
9
+ 9u
8
+ 3u
7
13u
6
17u
5
+ 2u
4
+ 18u
3
+ 9u
2
7u 6
u
10
+ 4u
9
+ 5u
8
2u
7
11u
6
6u
5
+ 8u
4
+ 9u
3
2u
2
4u
a
8
=
u
9
+ 4u
8
+ 5u
7
2u
6
11u
5
6u
4
+ 8u
3
+ 10u
2
2u 6
u
3
u
2
+ 1
a
1
=
u
2
+ 1
u
4
a
5
=
u
u
a
9
=
4u
10
+ 18u
9
+ ··· 29u 9
u
10
5u
9
9u
8
3u
7
+ 13u
6
+ 16u
5
4u
4
18u
3
6u
2
+ 8u + 3
a
4
=
u
10
4u
9
4u
8
+ 5u
7
+ 13u
6
+ 2u
5
15u
4
9u
3
+ 8u
2
+ 8u 4
u
10
+ 4u
9
+ 5u
8
2u
7
11u
6
6u
5
+ 8u
4
+ 10u
3
u
2
5u
a
12
=
u
10
5u
9
9u
8
3u
7
+ 13u
6
+ 17u
5
3u
4
20u
3
10u
2
+ 8u + 7
u
10
4u
9
5u
8
+ 2u
7
+ 10u
6
+ 4u
5
9u
4
8u
3
+ 3u
2
+ 4u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
10
+ 6u
9
+ 10u
8
u
7
24u
6
21u
5
+ 17u
4
+ 35u
3
+ 5u
2
26u 14
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
11
7u
10
+ ··· + 13u 1
c
2
u
11
+ 5u
10
+ ··· 5u 1
c
3
u
11
u
10
+ ··· + 6u 1
c
4
u
11
+ u
10
u
9
2u
8
5u
7
+ 4u
6
+ 12u
5
4u
4
+ u
3
+ 5u
2
1
c
5
u
11
5u
10
+ ··· 5u + 1
c
6
u
11
+ u
10
+ 5u
9
+ 5u
8
+ 9u
7
+ 8u
6
+ 6u
5
u
3
6u
2
2u 1
c
7
u
11
+ u
10
+ ··· + 6u + 1
c
8
u
11
4u
10
+ ··· + 15u 5
c
9
u
11
u
10
u
9
+ 2u
8
5u
7
4u
6
+ 12u
5
+ 4u
4
+ u
3
5u
2
+ 1
c
10
u
11
u
10
+ 5u
9
5u
8
+ 9u
7
8u
6
+ 6u
5
u
3
+ 6u
2
2u + 1
c
11
u
11
+ 4u
10
+ ··· + 15u + 5
c
12
u
11
3u
10
u
8
+ 8u
7
+ 8u
6
+ 10u
5
13u
4
17u
3
8u
2
+ 11u + 5
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ y
10
+ ··· 11y 1
c
2
, c
5
y
11
7y
10
+ ··· + 13y 1
c
3
, c
7
y
11
7y
10
+ ··· + 8y 1
c
4
, c
9
y
11
3y
10
+ ··· + 10y 1
c
6
, c
10
y
11
+ 9y
10
+ ··· 8y 1
c
8
, c
11
y
11
+ 8y
10
+ ··· 65y 25
c
12
y
11
9y
10
+ ··· + 201y 25
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.888248 + 0.348807I
a = 1.094700 + 0.166339I
b = 0.518352 + 0.184714I
1.62880 3.55605I 13.8351 + 4.8849I
u = 0.888248 0.348807I
a = 1.094700 0.166339I
b = 0.518352 0.184714I
1.62880 + 3.55605I 13.8351 4.8849I
u = 0.865988
a = 0.906257
b = 0.420586
2.51061 16.1470
u = 0.794068 + 1.051540I
a = 1.013640 + 0.571990I
b = 1.35569 0.45895I
7.94404 + 2.78344I 1.36367 2.55365I
u = 0.794068 1.051540I
a = 1.013640 0.571990I
b = 1.35569 + 0.45895I
7.94404 2.78344I 1.36367 + 2.55365I
u = 1.12350 + 0.92492I
a = 0.823218 0.546732I
b = 1.52074 + 0.25018I
6.92380 + 4.41989I 2.52937 2.98344I
u = 1.12350 0.92492I
a = 0.823218 + 0.546732I
b = 1.52074 0.25018I
6.92380 4.41989I 2.52937 + 2.98344I
u = 1.56100 + 0.06449I
a = 0.120564 + 0.249710I
b = 0.383171 + 0.664642I
9.38029 2.74226I 13.9541 + 7.1206I
u = 1.56100 0.06449I
a = 0.120564 0.249710I
b = 0.383171 0.664642I
9.38029 + 2.74226I 13.9541 7.1206I
u = 0.342676 + 0.154468I
a = 1.16941 2.73498I
b = 0.41006 + 1.60424I
4.21611 + 3.79963I 5.24446 3.20279I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.342676 0.154468I
a = 1.16941 + 2.73498I
b = 0.41006 1.60424I
4.21611 3.79963I 5.24446 + 3.20279I
18
IV. I
u
4
= hb
2
+ b 1, a + 1, u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
1
a
3
=
1
1
a
10
=
1
b
a
11
=
1
b 1
a
7
=
1
b
a
8
=
b 2
1
a
1
=
0
1
a
5
=
1
1
a
9
=
b 2
1
a
4
=
2b 2
b
a
12
=
1
b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
(u 1)
2
c
3
, c
4
u
2
u 1
c
5
, c
10
, c
12
(u + 1)
2
c
7
, c
9
u
2
+ u 1
c
8
, c
11
u
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
12
(y 1)
2
c
3
, c
4
, c
7
c
9
y
2
3y + 1
c
8
, c
11
y
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.618034
3.28987 7.00000
u = 1.00000
a = 1.00000
b = 1.61803
3.28987 7.00000
22
V. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
1
0
a
3
=
1
0
a
10
=
0
1
a
11
=
1
1
a
7
=
0
1
a
8
=
1
1
a
1
=
1
0
a
5
=
1
0
a
9
=
1
1
a
4
=
0
1
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
8
, c
11
u
c
3
, c
4
, c
6
c
7
, c
9
, c
10
c
12
u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
8
, c
11
y
c
3
, c
4
, c
6
c
7
, c
9
, c
10
c
12
y 1
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
2
· (u
10
+ 2u
9
+ 9u
8
+ 15u
7
+ 28u
6
+ 36u
5
+ 35u
4
+ 22u
3
+ 15u
2
+ 6u + 1)
2
· (u
11
7u
10
+ ··· + 13u 1)(u
20
+ 8u
19
+ ··· + 150u + 9)
c
2
u(u 1)
2
· (u
10
2u
9
+ u
8
+ 3u
7
2u
6
2u
5
+ 3u
4
+ 2u
3
u
2
2u + 1)
2
· (u
11
+ 5u
10
+ ··· 5u 1)(u
20
+ 8u
19
+ ··· 12u 3)
c
3
(u + 1)(u
2
u 1)(u
11
u
10
+ ··· + 6u 1)(u
20
2u
19
+ ··· + u + 1)
· (u
20
+ 2u
19
+ ··· 19u + 61)
c
4
(u + 1)(u
2
u 1)
· (u
11
+ u
10
u
9
2u
8
5u
7
+ 4u
6
+ 12u
5
4u
4
+ u
3
+ 5u
2
1)
· (u
20
8u
18
+ ··· + 3u + 1)(u
20
6u
18
+ ··· 15u + 85)
c
5
u(u + 1)
2
· (u
10
2u
9
+ u
8
+ 3u
7
2u
6
2u
5
+ 3u
4
+ 2u
3
u
2
2u + 1)
2
· (u
11
5u
10
+ ··· 5u + 1)(u
20
+ 8u
19
+ ··· 12u 3)
c
6
(u 1)
2
(u + 1)
· (u
11
+ u
10
+ 5u
9
+ 5u
8
+ 9u
7
+ 8u
6
+ 6u
5
u
3
6u
2
2u 1)
· (u
20
+ 6u
18
+ ··· + 9u + 1)(u
20
3u
19
+ ··· 108u + 59)
c
7
(u + 1)(u
2
+ u 1)(u
11
+ u
10
+ ··· + 6u + 1)(u
20
2u
19
+ ··· + u + 1)
· (u
20
+ 2u
19
+ ··· 19u + 61)
c
8
u
3
(u
10
+ 3u
9
+ 6u
8
+ 7u
7
+ 9u
6
+ 9u
5
+ 10u
4
+ 6u
3
+ 5u
2
+ 3u + 2)
2
· (u
11
4u
10
+ ··· + 15u 5)(u
20
7u
19
+ ··· + 12u 3)
c
9
(u + 1)(u
2
+ u 1)
· (u
11
u
10
u
9
+ 2u
8
5u
7
4u
6
+ 12u
5
+ 4u
4
+ u
3
5u
2
+ 1)
· (u
20
8u
18
+ ··· + 3u + 1)(u
20
6u
18
+ ··· 15u + 85)
c
10
((u + 1)
3
)(u
11
u
10
+ ··· 2u + 1)
· (u
20
+ 6u
18
+ ··· + 9u + 1)(u
20
3u
19
+ ··· 108u + 59)
c
11
u
3
(u
10
+ 3u
9
+ 6u
8
+ 7u
7
+ 9u
6
+ 9u
5
+ 10u
4
+ 6u
3
+ 5u
2
+ 3u + 2)
2
· (u
11
+ 4u
10
+ ··· + 15u + 5)(u
20
7u
19
+ ··· + 12u 3)
c
12
(u 1)
20
(u + 1)
3
· (u
11
3u
10
u
8
+ 8u
7
+ 8u
6
+ 10u
5
13u
4
17u
3
8u
2
+ 11u + 5)
· (u
20
+ 21u
19
+ ··· + 6656u + 512)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y 1)
2
(y
10
+ 14y
9
+ ··· 6y + 1)
2
(y
11
+ y
10
+ ··· 11y 1)
· (y
20
+ 16y
19
+ ··· 5202y + 81)
c
2
, c
5
y(y 1)
2
· (y
10
2y
9
+ 9y
8
15y
7
+ 28y
6
36y
5
+ 35y
4
22y
3
+ 15y
2
6y + 1)
2
· (y
11
7y
10
+ ··· + 13y 1)(y
20
8y
19
+ ··· 150y + 9)
c
3
, c
7
(y 1)(y
2
3y + 1)(y
11
7y
10
+ ··· + 8y 1)(y
20
28y
19
+ ··· + 7y + 1)
· (y
20
12y
19
+ ··· 40987y + 3721)
c
4
, c
9
(y 1)(y
2
3y + 1)(y
11
3y
10
+ ··· + 10y 1)
· (y
20
16y
19
+ ··· + 5y + 1)(y
20
12y
19
+ ··· 97975y + 7225)
c
6
, c
10
((y 1)
3
)(y
11
+ 9y
10
+ ··· 8y 1)(y
20
+ 12y
19
+ ··· 21y + 1)
· (y
20
+ 13y
19
+ ··· + 76246y + 3481)
c
8
, c
11
y
3
(y
10
+ 3y
9
+ ··· + 11y + 4)
2
(y
11
+ 8y
10
+ ··· 65y 25)
· (y
20
+ 11y
19
+ ··· 132y + 9)
c
12
((y 1)
23
)(y
11
9y
10
+ ··· + 201y 25)
· (y
20
9y
19
+ ··· 2621440y + 262144)
28