12n
0380
(K12n
0380
)
A knot diagram
1
Linearized knot diagam
3 6 9 7 2 12 3 10 4 8 1 7
Solving Sequence
3,9
4
6,10
2 1 5 8 11 7 12
c
3
c
9
c
2
c
1
c
5
c
8
c
10
c
7
c
12
c
4
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
24
+ 2u
23
+ ··· + b 1, u
24
u
23
+ ··· + 2a 2, u
25
+ 3u
24
+ ··· 4u 2i
I
u
2
= h−36u
11
a + 71u
11
+ ··· + 286a 731, 2u
11
a + 2u
10
a + ··· 4a 1,
u
12
2u
10
+ u
9
+ 4u
8
u
7
3u
6
+ 3u
5
+ 3u
4
u
3
u
2
+ 2u + 1i
I
u
3
= hb + 1, u
3
+ 2u
2
+ 2a + u 2, u
4
u
2
+ 2i
I
u
4
= hb 1, a u, u
4
+ 1i
I
u
5
= hb, a + 1, u 1i
I
u
6
= hb + 1, a 2, u 1i
I
u
7
= hb + 1, a 3, u 1i
I
u
8
= hb + 1, a 1, u + 1i
I
v
1
= ha, b 1, v + 1i
* 9 irreducible components of dim
C
= 0, with total 62 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
24
+2u
23
+· · ·+b1, u
24
u
23
+· · ·+2a2, u
25
+3u
24
+· · ·4u2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
1
2
u
24
+
1
2
u
23
+ ··· + u
2
+ 1
u
24
2u
23
+ ··· + 2u + 1
a
10
=
u
u
3
+ u
a
2
=
1
2
u
24
+
5
2
u
23
+ ··· 3u 2
u
23
u
22
+ ··· + 2u + 1
a
1
=
1
2
u
24
+
3
2
u
23
+ ··· u 1
u
23
u
22
+ ··· + 2u + 1
a
5
=
u
12
+ u
10
3u
8
+ 2u
6
2u
4
+ u
2
+ 1
u
12
2u
10
+ 4u
8
4u
6
+ 3u
4
2u
2
a
8
=
u
3
u
5
u
3
+ u
a
11
=
u
5
+ u
u
7
+ u
5
2u
3
+ u
a
7
=
u
5
u
u
5
u
3
+ u
a
12
=
1
2
u
24
5
2
u
23
+ ··· + 4u + 3
u
23
+ u
22
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
24
+ 10u
22
+ 6u
21
30u
20
24u
19
+ 54u
18
+ 64u
17
72u
16
112u
15
+ 54u
14
+
150u
13
12u
12
142u
11
42u
10
+100u
9
+66u
8
34u
7
56u
6
6u
5
+22u
4
+18u
3
2u 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
25
+ 5u
24
+ ··· + 11u + 1
c
2
, c
5
, c
6
c
12
u
25
+ u
24
+ ··· + u 1
c
3
, c
9
u
25
+ 3u
24
+ ··· 4u 2
c
4
u
25
+ 21u
24
+ ··· + 13332u + 2962
c
7
u
25
3u
24
+ ··· 92u 26
c
8
, c
10
u
25
9u
24
+ ··· 8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
25
+ 43y
24
+ ··· + 11y 1
c
2
, c
5
, c
6
c
12
y
25
5y
24
+ ··· + 11y 1
c
3
, c
9
y
25
9y
24
+ ··· 8y 4
c
4
y
25
33y
24
+ ··· 42476552y 8773444
c
7
y
25
21y
24
+ ··· 4952y 676
c
8
, c
10
y
25
+ 15y
24
+ ··· + 320y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.980316 + 0.233102I
a = 0.44130 + 2.47602I
b = 0.622808 0.762022I
2.82058 3.81422I 4.98039 + 6.61368I
u = 0.980316 0.233102I
a = 0.44130 2.47602I
b = 0.622808 + 0.762022I
2.82058 + 3.81422I 4.98039 6.61368I
u = 0.568077 + 0.832369I
a = 0.51973 1.50739I
b = 1.13721 + 0.86526I
4.15791 + 8.74016I 1.84068 4.40634I
u = 0.568077 0.832369I
a = 0.51973 + 1.50739I
b = 1.13721 0.86526I
4.15791 8.74016I 1.84068 + 4.40634I
u = 0.733592 + 0.747057I
a = 0.337972 0.198014I
b = 0.611523 + 0.222308I
3.30756 0.71712I 2.44059 + 3.90523I
u = 0.733592 0.747057I
a = 0.337972 + 0.198014I
b = 0.611523 0.222308I
3.30756 + 0.71712I 2.44059 3.90523I
u = 0.932488 + 0.483370I
a = 0.96761 + 1.60037I
b = 0.206915 0.805921I
1.59893 + 1.80276I 4.99535 2.09686I
u = 0.932488 0.483370I
a = 0.96761 1.60037I
b = 0.206915 + 0.805921I
1.59893 1.80276I 4.99535 + 2.09686I
u = 0.932840
a = 0.687051
b = 0.498290
1.77401 4.83650
u = 0.764755 + 0.774203I
a = 0.171446 0.325902I
b = 0.784319 + 0.533336I
3.51376 2.47052I 3.49276 + 4.45848I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.764755 0.774203I
a = 0.171446 + 0.325902I
b = 0.784319 0.533336I
3.51376 + 2.47052I 3.49276 4.45848I
u = 0.437237 + 0.783767I
a = 0.49146 + 1.67035I
b = 1.037150 0.927401I
4.93859 5.35756I 1.01874 + 4.42089I
u = 0.437237 0.783767I
a = 0.49146 1.67035I
b = 1.037150 + 0.927401I
4.93859 + 5.35756I 1.01874 4.42089I
u = 1.156340 + 0.047910I
a = 2.12651 + 3.13266I
b = 1.12099 0.93923I
10.42970 + 7.39157I 4.47957 4.57784I
u = 1.156340 0.047910I
a = 2.12651 3.13266I
b = 1.12099 + 0.93923I
10.42970 7.39157I 4.47957 + 4.57784I
u = 0.970077 + 0.698318I
a = 0.166009 + 0.595943I
b = 0.620681 + 0.170359I
2.58593 4.79128I 0.37722 + 2.00234I
u = 0.970077 0.698318I
a = 0.166009 0.595943I
b = 0.620681 0.170359I
2.58593 + 4.79128I 0.37722 2.00234I
u = 0.951621 + 0.731482I
a = 0.63483 1.61897I
b = 0.831342 + 0.569410I
2.94773 + 8.15802I 2.49516 9.64578I
u = 0.951621 0.731482I
a = 0.63483 + 1.61897I
b = 0.831342 0.569410I
2.94773 8.15802I 2.49516 + 9.64578I
u = 1.076120 + 0.616232I
a = 2.32949 + 1.21588I
b = 1.02897 0.98641I
6.80687 + 0.12880I 1.81794 + 0.42247I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.076120 0.616232I
a = 2.32949 1.21588I
b = 1.02897 + 0.98641I
6.80687 0.12880I 1.81794 0.42247I
u = 1.066850 + 0.683933I
a = 0.18246 3.26046I
b = 1.16937 + 0.87177I
5.6578 14.4091I 0.10967 + 8.76133I
u = 1.066850 0.683933I
a = 0.18246 + 3.26046I
b = 1.16937 0.87177I
5.6578 + 14.4091I 0.10967 8.76133I
u = 0.060646 + 0.510945I
a = 0.334239 + 0.498112I
b = 0.490067 0.520637I
0.268317 + 1.373590I 2.13600 4.81420I
u = 0.060646 0.510945I
a = 0.334239 0.498112I
b = 0.490067 + 0.520637I
0.268317 1.373590I 2.13600 + 4.81420I
7
II. I
u
2
= h−36u
11
a + 71u
11
+ · · · + 286a 731, 2u
11
a + 2u
10
a + · · · 4a
1, u
12
2u
10
+ · · · + 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
a
0.0599002au
11
0.118136u
11
+ ··· 0.475874a + 1.21631
a
10
=
u
u
3
+ u
a
2
=
0.118136au
11
0.128120u
11
+ ··· + 1.21631a + 1.62895
0.0682196au
11
+ 0.0599002u
11
+ ··· 0.153078a 1.47587
a
1
=
0.0499168au
11
0.0682196u
11
+ ··· + 1.06323a + 0.153078
0.0682196au
11
+ 0.0599002u
11
+ ··· 0.153078a 1.47587
a
5
=
u
10
+ u
9
+ u
8
u
7
u
6
+ 3u
5
+ u
4
u
3
+ 2u + 2
u
9
+ u
7
u
6
3u
5
+ u
3
u
2
2u 1
a
8
=
u
3
u
5
u
3
+ u
a
11
=
u
5
+ u
u
7
+ u
5
2u
3
+ u
a
7
=
u
5
u
u
5
u
3
+ u
a
12
=
0.118136au
11
0.128120u
11
+ ··· + 1.21631a 0.371048
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
11
8u
9
+ 4u
8
+ 12u
7
4u
6
8u
5
+ 8u
4
+ 4u
3
4u
2
4u + 2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
24
+ 8u
23
+ ··· + 268u + 49
c
2
, c
5
, c
6
c
12
u
24
+ 2u
23
+ ··· + 4u 7
c
3
, c
9
(u
12
2u
10
+ u
9
+ 4u
8
u
7
3u
6
+ 3u
5
+ 3u
4
u
3
u
2
+ 2u + 1)
2
c
4
(u
12
8u
11
+ ··· 48u 23)
2
c
7
(u
12
+ 2u
11
+ ··· + 4u + 1)
2
c
8
, c
10
(u
12
4u
11
+ ··· 6u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
24
+ 16y
23
+ ··· + 54988y + 2401
c
2
, c
5
, c
6
c
12
y
24
8y
23
+ ··· 268y + 49
c
3
, c
9
(y
12
4y
11
+ ··· 6y + 1)
2
c
4
(y
12
28y
11
+ ··· 9802y + 529)
2
c
7
(y
12
16y
11
+ ··· 6y + 1)
2
c
8
, c
10
(y
12
+ 8y
11
+ ··· 14y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.511432 + 0.812623I
a = 0.67786 + 1.48575I
b = 0.900728 1.001250I
5.38423 1.70959I 0.128193 + 0.167200I
u = 0.511432 + 0.812623I
a = 0.55283 1.54744I
b = 0.756837 + 1.060930I
5.38423 1.70959I 0.128193 + 0.167200I
u = 0.511432 0.812623I
a = 0.67786 1.48575I
b = 0.900728 + 1.001250I
5.38423 + 1.70959I 0.128193 0.167200I
u = 0.511432 0.812623I
a = 0.55283 + 1.54744I
b = 0.756837 1.060930I
5.38423 + 1.70959I 0.128193 0.167200I
u = 0.850204 + 0.630914I
a = 0.132727 0.669979I
b = 1.145980 + 0.247522I
5.05906 + 2.46907I 5.52253 3.95252I
u = 0.850204 + 0.630914I
a = 0.07414 2.86500I
b = 1.068390 + 0.305673I
5.05906 + 2.46907I 5.52253 3.95252I
u = 0.850204 0.630914I
a = 0.132727 + 0.669979I
b = 1.145980 0.247522I
5.05906 2.46907I 5.52253 + 3.95252I
u = 0.850204 0.630914I
a = 0.07414 + 2.86500I
b = 1.068390 0.305673I
5.05906 2.46907I 5.52253 + 3.95252I
u = 0.635020 + 0.640255I
a = 0.226456 + 0.011257I
b = 1.204970 0.052489I
3.08210 + 0.49850I 1.36863 1.38008I
u = 0.635020 + 0.640255I
a = 1.55856 1.03377I
b = 0.457992 + 0.354536I
3.08210 + 0.49850I 1.36863 1.38008I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.635020 0.640255I
a = 0.226456 0.011257I
b = 1.204970 + 0.052489I
3.08210 0.49850I 1.36863 + 1.38008I
u = 0.635020 0.640255I
a = 1.55856 + 1.03377I
b = 0.457992 0.354536I
3.08210 0.49850I 1.36863 + 1.38008I
u = 1.16193
a = 1.91107 + 3.18977I
b = 0.855561 1.093600I
11.2998 5.66710
u = 1.16193
a = 1.91107 3.18977I
b = 0.855561 + 1.093600I
11.2998 5.66710
u = 0.985497 + 0.634576I
a = 0.67437 1.64764I
b = 0.301152 + 0.483288I
2.05779 5.52285I 0.56374 + 6.48307I
u = 0.985497 + 0.634576I
a = 0.79418 + 1.81824I
b = 1.207840 0.138399I
2.05779 5.52285I 0.56374 + 6.48307I
u = 0.985497 0.634576I
a = 0.67437 + 1.64764I
b = 0.301152 0.483288I
2.05779 + 5.52285I 0.56374 6.48307I
u = 0.985497 0.634576I
a = 0.79418 1.81824I
b = 1.207840 + 0.138399I
2.05779 + 5.52285I 0.56374 6.48307I
u = 1.075030 + 0.655125I
a = 2.21955 1.41327I
b = 0.739507 + 1.114900I
7.05914 + 7.20360I 2.08749 4.71657I
u = 1.075030 + 0.655125I
a = 0.12063 + 3.16354I
b = 0.949962 1.026010I
7.05914 + 7.20360I 2.08749 4.71657I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.075030 0.655125I
a = 2.21955 + 1.41327I
b = 0.739507 1.114900I
7.05914 7.20360I 2.08749 + 4.71657I
u = 1.075030 0.655125I
a = 0.12063 3.16354I
b = 0.949962 + 1.026010I
7.05914 7.20360I 2.08749 + 4.71657I
u = 0.470358
a = 0.00729607
b = 1.13611
2.62918 3.06920
u = 0.470358
a = 4.26177
b = 0.746787
2.62918 3.06920
13
III. I
u
3
= hb + 1, u
3
+ 2u
2
+ 2a + u 2, u
4
u
2
+ 2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
1
2
u
3
u
2
1
2
u + 1
1
a
10
=
u
u
3
+ u
a
2
=
1
2
u
3
u
2
1
2
u + 2
1
a
1
=
1
2
u
3
u
2
1
2
u + 1
1
a
5
=
1
0
a
8
=
u
3
u
a
11
=
u
3
u
u
a
7
=
u
3
+ u
u
a
12
=
3
2
u
3
u
2
3
2
u + 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
4
c
2
, c
6
(u + 1)
4
c
3
, c
4
, c
7
c
9
u
4
u
2
+ 2
c
8
(u
2
+ u + 2)
2
c
10
(u
2
u + 2)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
y + 2)
2
c
8
, c
10
(y
2
+ 3y + 4)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.978318 + 0.676097I
a = 0.191776 0.844803I
b = 1.00000
4.11234 + 5.33349I 6.00000 5.29150I
u = 0.978318 0.676097I
a = 0.191776 + 0.844803I
b = 1.00000
4.11234 5.33349I 6.00000 + 5.29150I
u = 0.978318 + 0.676097I
a = 1.19178 + 1.80095I
b = 1.00000
4.11234 5.33349I 6.00000 + 5.29150I
u = 0.978318 0.676097I
a = 1.19178 1.80095I
b = 1.00000
4.11234 + 5.33349I 6.00000 5.29150I
17
IV. I
u
4
= hb 1, a u, u
4
+ 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
u
1
a
10
=
u
u
3
+ u
a
2
=
u + 1
1
a
1
=
u
1
a
5
=
1
0
a
8
=
u
3
u
3
a
11
=
0
u
3
a
7
=
0
u
3
a
12
=
u
u
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
(u 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ 1
c
5
, c
12
(u + 1)
4
c
8
, c
10
(u
2
+ 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ 1)
2
c
8
, c
10
(y + 1)
4
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 0.707107 + 0.707107I
b = 1.00000
4.93480 8.00000
u = 0.707107 0.707107I
a = 0.707107 0.707107I
b = 1.00000
4.93480 8.00000
u = 0.707107 + 0.707107I
a = 0.707107 + 0.707107I
b = 1.00000
4.93480 8.00000
u = 0.707107 0.707107I
a = 0.707107 0.707107I
b = 1.00000
4.93480 8.00000
21
V. I
u
5
= hb, a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
6
=
1
0
a
10
=
1
0
a
2
=
1
0
a
1
=
1
0
a
5
=
1
0
a
8
=
1
1
a
11
=
2
1
a
7
=
2
1
a
12
=
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
c
3
, c
6
, c
7
c
8
, c
9
, c
10
c
12
u 1
c
4
, c
11
u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
c
3
, c
4
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
1.64493 6.00000
25
VI. I
u
6
= hb + 1, a 2, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
6
=
2
1
a
10
=
1
0
a
2
=
3
1
a
1
=
2
1
a
5
=
1
0
a
8
=
1
1
a
11
=
2
1
a
7
=
2
1
a
12
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u + 1
c
2
, c
3
, c
5
c
7
, c
8
, c
9
c
10
u 1
c
6
, c
11
, c
12
u
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
9
, c
10
y 1
c
6
, c
11
, c
12
y
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
1.64493 6.00000
29
VII. I
u
7
= hb + 1, a 3, u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
6
=
3
1
a
10
=
1
0
a
2
=
4
1
a
1
=
3
1
a
5
=
1
0
a
8
=
1
1
a
11
=
2
1
a
7
=
2
1
a
12
=
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
10
, c
11
, c
12
u 1
c
2
, c
4
, c
6
c
7
, c
8
, c
9
u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 3.00000
b = 1.00000
0 0
33
VIII. I
u
8
= hb + 1, a 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
6
=
1
1
a
10
=
1
0
a
2
=
2
1
a
1
=
1
1
a
5
=
1
0
a
8
=
1
1
a
11
=
2
1
a
7
=
2
1
a
12
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
9
, c
10
c
11
, c
12
u 1
c
2
, c
3
, c
6
c
8
u + 1
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
37
IX. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
6
=
0
1
a
10
=
1
0
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
8
=
1
0
a
11
=
1
0
a
7
=
1
0
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
11
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
12
u + 1
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
41
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
u(u 1)
11
(u + 1)(u
24
+ 8u
23
+ ··· + 268u + 49)
· (u
25
+ 5u
24
+ ··· + 11u + 1)
c
2
, c
6
u(u 1)
6
(u + 1)
6
(u
24
+ 2u
23
+ ··· + 4u 7)(u
25
+ u
24
+ ··· + u 1)
c
3
, c
9
u(u 1)
3
(u + 1)(u
4
+ 1)(u
4
u
2
+ 2)
· (u
12
2u
10
+ u
9
+ 4u
8
u
7
3u
6
+ 3u
5
+ 3u
4
u
3
u
2
+ 2u + 1)
2
· (u
25
+ 3u
24
+ ··· 4u 2)
c
4
u(u 1)(u + 1)
3
(u
4
+ 1)(u
4
u
2
+ 2)(u
12
8u
11
+ ··· 48u 23)
2
· (u
25
+ 21u
24
+ ··· + 13332u + 2962)
c
5
, c
12
u(u 1)
7
(u + 1)
5
(u
24
+ 2u
23
+ ··· + 4u 7)(u
25
+ u
24
+ ··· + u 1)
c
7
u(u 1)
3
(u + 1)(u
4
+ 1)(u
4
u
2
+ 2)(u
12
+ 2u
11
+ ··· + 4u + 1)
2
· (u
25
3u
24
+ ··· 92u 26)
c
8
u(u 1)
2
(u + 1)
2
(u
2
+ 1)
2
(u
2
+ u + 2)
2
· ((u
12
4u
11
+ ··· 6u + 1)
2
)(u
25
9u
24
+ ··· 8u 4)
c
10
u(u 1)
4
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
12
4u
11
+ ··· 6u + 1)
2
· (u
25
9u
24
+ ··· 8u 4)
42
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
y(y 1)
12
(y
24
+ 16y
23
+ ··· + 54988y + 2401)
· (y
25
+ 43y
24
+ ··· + 11y 1)
c
2
, c
5
, c
6
c
12
y(y 1)
12
(y
24
8y
23
+ ··· 268y + 49)(y
25
5y
24
+ ··· + 11y 1)
c
3
, c
9
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
12
4y
11
+ ··· 6y + 1)
2
· (y
25
9y
24
+ ··· 8y 4)
c
4
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
· (y
12
28y
11
+ ··· 9802y + 529)
2
· (y
25
33y
24
+ ··· 42476552y 8773444)
c
7
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
12
16y
11
+ ··· 6y + 1)
2
· (y
25
21y
24
+ ··· 4952y 676)
c
8
, c
10
y(y 1)
4
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
12
+ 8y
11
+ ··· 14y + 1)
2
· (y
25
+ 15y
24
+ ··· + 320y 16)
43