12n
0381
(K12n
0381
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 11 5 12 5 9 6 8
Solving Sequence
2,5
6
3,11
7 8 12 9 10 1 4
c
5
c
2
c
6
c
7
c
11
c
8
c
9
c
1
c
4
c
3
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.36468 × 10
56
u
46
1.46395 × 10
57
u
45
+ ··· + 1.51320 × 10
57
b 1.91371 × 10
57
,
7.99348 × 10
54
u
46
2.59401 × 10
55
u
45
+ ··· + 4.32343 × 10
55
a 1.46564 × 10
56
, u
47
+ 3u
46
+ ··· 5u
2
+ 1i
I
u
2
= h−u
17
+ 2u
16
+ ··· + b + 2, u
17
+ 4u
16
+ ··· + a + 1, u
18
2u
17
+ ··· u + 1i
* 2 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.36 × 10
56
u
46
1.46 × 10
57
u
45
+ · · · + 1.51 × 10
57
b 1.91 ×
10
57
, 7.99 × 10
54
u
46
2.59 × 10
55
u
45
+ · · · + 4.32 × 10
55
a 1.47 ×
10
56
, u
47
+ 3u
46
+ · · · 5u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
0.184887u
46
+ 0.599989u
45
+ ··· + 7.65952u + 3.38998
0.156270u
46
+ 0.967456u
45
+ ··· 6.23699u + 1.26468
a
7
=
0.392620u
46
1.26417u
45
+ ··· + 0.374970u 5.61900
0.486693u
46
1.16240u
45
+ ··· 4.45856u + 0.810275
a
8
=
0.0940733u
46
0.101769u
45
+ ··· + 4.83353u 6.42928
0.486693u
46
1.16240u
45
+ ··· 4.45856u + 0.810275
a
12
=
0.0450287u
46
0.465608u
45
+ ··· + 13.7116u + 2.07998
0.351089u
46
+ 1.56063u
45
+ ··· 6.00707u + 1.64053
a
9
=
1.71992u
46
4.82180u
45
+ ··· 8.94537u 0.160735
0.541339u
46
1.45857u
45
+ ··· 1.17123u + 0.611126
a
10
=
1.17858u
46
3.36324u
45
+ ··· 7.77415u 0.771861
0.541339u
46
1.45857u
45
+ ··· 1.17123u + 0.611126
a
1
=
u
3
u
5
u
3
+ u
a
4
=
0.0281343u
46
+ 0.124133u
45
+ ··· + 4.75548u + 3.17124
0.912499u
46
+ 2.86257u
45
+ ··· 1.94007u + 1.59134
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.80868u
46
7.60191u
45
+ ··· 15.3938u + 3.54968
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
47
+ 9u
46
+ ··· + 10u + 1
c
2
, c
5
u
47
+ 3u
46
+ ··· 5u
2
+ 1
c
3
u
47
+ 32u
45
+ ··· + 305u + 3721
c
4
, c
9
u
47
+ u
46
+ ··· 9u + 1
c
6
, c
11
u
47
+ 2u
46
+ ··· 1808u + 163
c
7
u
47
3u
46
+ ··· + 37265u + 230749
c
8
, c
12
u
47
+ 4u
46
+ ··· + 474u + 73
c
10
u
47
35u
46
+ ··· + 37u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
47
+ 67y
46
+ ··· 62y 1
c
2
, c
5
y
47
9y
46
+ ··· + 10y 1
c
3
y
47
+ 64y
46
+ ··· 273936299y 13845841
c
4
, c
9
y
47
+ 35y
46
+ ··· + 37y 1
c
6
, c
11
y
47
+ 46y
46
+ ··· + 1197786y 26569
c
7
y
47
+ 97y
46
+ ··· 501554609163y 53245101001
c
8
, c
12
y
47
+ 46y
45
+ ··· + 210660y 5329
c
10
y
47
37y
46
+ ··· 1687y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.762370 + 0.649452I
a = 1.50637 + 1.24868I
b = 0.989488 0.131338I
5.23780 6.46320I 1.46400 + 8.28387I
u = 0.762370 0.649452I
a = 1.50637 1.24868I
b = 0.989488 + 0.131338I
5.23780 + 6.46320I 1.46400 8.28387I
u = 0.969690 + 0.156566I
a = 0.78768 + 1.48941I
b = 0.170053 + 0.274049I
1.28197 + 2.91902I 6.17943 3.54883I
u = 0.969690 0.156566I
a = 0.78768 1.48941I
b = 0.170053 0.274049I
1.28197 2.91902I 6.17943 + 3.54883I
u = 0.999768 + 0.303365I
a = 0.822827 + 0.875403I
b = 0.047491 + 1.410890I
3.50808 + 0.30720I 13.9878 2.1509I
u = 0.999768 0.303365I
a = 0.822827 0.875403I
b = 0.047491 1.410890I
3.50808 0.30720I 13.9878 + 2.1509I
u = 0.927859 + 0.501471I
a = 0.391994 + 0.880414I
b = 1.15238 + 1.05300I
2.42036 5.43835I 10.53298 + 5.82034I
u = 0.927859 0.501471I
a = 0.391994 0.880414I
b = 1.15238 1.05300I
2.42036 + 5.43835I 10.53298 5.82034I
u = 0.538449 + 0.740127I
a = 0.51120 + 1.74597I
b = 0.835490 + 0.313643I
2.12448 + 2.88678I 5.05632 3.90476I
u = 0.538449 0.740127I
a = 0.51120 1.74597I
b = 0.835490 0.313643I
2.12448 2.88678I 5.05632 + 3.90476I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.812709 + 0.407282I
a = 0.917456 0.540115I
b = 1.22892 0.77634I
4.89911 + 2.22864I 0.91069 + 1.26993I
u = 0.812709 0.407282I
a = 0.917456 + 0.540115I
b = 1.22892 + 0.77634I
4.89911 2.22864I 0.91069 1.26993I
u = 0.356859 + 1.085610I
a = 0.123516 + 1.294310I
b = 0.684132 + 0.610771I
6.45758 0.19356I 1.61840 + 0.58039I
u = 0.356859 1.085610I
a = 0.123516 1.294310I
b = 0.684132 0.610771I
6.45758 + 0.19356I 1.61840 0.58039I
u = 1.112960 + 0.392492I
a = 0.993882 0.188437I
b = 1.275610 0.507155I
0.02525 + 1.58346I 5.18804 1.00520I
u = 1.112960 0.392492I
a = 0.993882 + 0.188437I
b = 1.275610 + 0.507155I
0.02525 1.58346I 5.18804 + 1.00520I
u = 0.599789 + 0.540388I
a = 0.036112 + 0.593518I
b = 0.363889 0.014702I
2.07065 1.88289I 2.57014 + 4.18704I
u = 0.599789 0.540388I
a = 0.036112 0.593518I
b = 0.363889 + 0.014702I
2.07065 + 1.88289I 2.57014 4.18704I
u = 0.897826 + 0.816897I
a = 0.478130 0.208097I
b = 0.010006 0.790312I
8.49975 + 3.05476I 3.70184 1.92364I
u = 0.897826 0.816897I
a = 0.478130 + 0.208097I
b = 0.010006 + 0.790312I
8.49975 3.05476I 3.70184 + 1.92364I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.935406 + 0.903350I
a = 0.061964 + 0.510432I
b = 0.129870 0.075176I
4.37878 3.33131I 0
u = 0.935406 0.903350I
a = 0.061964 0.510432I
b = 0.129870 + 0.075176I
4.37878 + 3.33131I 0
u = 0.895107 + 1.020460I
a = 0.59940 1.56714I
b = 2.53084 0.17370I
15.0606 + 5.0419I 0
u = 0.895107 1.020460I
a = 0.59940 + 1.56714I
b = 2.53084 + 0.17370I
15.0606 5.0419I 0
u = 0.872024 + 1.067490I
a = 0.462555 1.314280I
b = 2.51393 0.29226I
10.96990 + 1.03471I 0
u = 0.872024 1.067490I
a = 0.462555 + 1.314280I
b = 2.51393 + 0.29226I
10.96990 1.03471I 0
u = 0.609271 + 0.090864I
a = 1.73564 + 0.80655I
b = 0.015666 0.339586I
0.78577 2.24530I 1.90996 + 0.61737I
u = 0.609271 0.090864I
a = 1.73564 0.80655I
b = 0.015666 + 0.339586I
0.78577 + 2.24530I 1.90996 0.61737I
u = 1.060760 + 0.918923I
a = 1.02378 + 1.23868I
b = 2.73250 0.04492I
14.5035 + 2.0770I 0
u = 1.060760 0.918923I
a = 1.02378 1.23868I
b = 2.73250 + 0.04492I
14.5035 2.0770I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.88048 + 1.11465I
a = 0.585508 1.063030I
b = 2.40490 0.28862I
15.6315 6.8243I 0
u = 0.88048 1.11465I
a = 0.585508 + 1.063030I
b = 2.40490 + 0.28862I
15.6315 + 6.8243I 0
u = 1.09371 + 0.92621I
a = 1.10674 + 1.32508I
b = 2.67812 0.20782I
10.22340 8.30631I 0
u = 1.09371 0.92621I
a = 1.10674 1.32508I
b = 2.67812 + 0.20782I
10.22340 + 8.30631I 0
u = 0.558280
a = 0.365775
b = 0.445102
0.793031 12.7680
u = 1.32146 + 0.57871I
a = 1.001920 + 0.175193I
b = 1.252130 0.118762I
3.13147 6.06944I 0
u = 1.32146 0.57871I
a = 1.001920 0.175193I
b = 1.252130 + 0.118762I
3.13147 + 6.06944I 0
u = 1.11216 + 0.94153I
a = 1.17595 + 1.33807I
b = 2.51990 0.19390I
14.8227 + 14.2823I 0
u = 1.11216 0.94153I
a = 1.17595 1.33807I
b = 2.51990 + 0.19390I
14.8227 14.2823I 0
u = 1.01074 + 1.18267I
a = 0.271199 + 1.032090I
b = 0.252566 + 0.583242I
7.80553 + 4.18941I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.01074 1.18267I
a = 0.271199 1.032090I
b = 0.252566 0.583242I
7.80553 4.18941I 0
u = 0.393275 + 0.193365I
a = 3.04506 1.79634I
b = 0.209999 + 0.923947I
1.11354 + 2.17945I 8.17041 2.91637I
u = 0.393275 0.193365I
a = 3.04506 + 1.79634I
b = 0.209999 0.923947I
1.11354 2.17945I 8.17041 + 2.91637I
u = 0.235367 + 0.361169I
a = 1.10685 1.57370I
b = 0.612976 1.024460I
4.58828 + 3.58928I 1.93036 7.49852I
u = 0.235367 0.361169I
a = 1.10685 + 1.57370I
b = 0.612976 + 1.024460I
4.58828 3.58928I 1.93036 + 7.49852I
u = 0.192286 + 0.378326I
a = 3.55874 0.28507I
b = 0.419190 + 1.143200I
0.94050 + 2.40895I 3.87483 0.19612I
u = 0.192286 0.378326I
a = 3.55874 + 0.28507I
b = 0.419190 1.143200I
0.94050 2.40895I 3.87483 + 0.19612I
9
II.
I
u
2
= h−u
17
+2u
16
+· · ·+b+2, u
17
+4u
16
+· · ·+a+1, u
18
2u
17
+· · ·u+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
u
17
4u
16
+ ··· 3u 1
u
17
2u
16
+ ··· 4u 2
a
7
=
u
16
+ 2u
15
+ ··· 3u + 4
3u
17
+ 4u
16
+ ··· u + 3
a
8
=
3u
17
5u
16
+ ··· 2u + 1
3u
17
+ 4u
16
+ ··· u + 3
a
12
=
u
17
u
16
+ ··· 2u + 3
u
17
2u
16
+ ··· 3u 1
a
9
=
u
17
2u
16
+ ··· + 4u 1
3u
17
+ 4u
16
+ ··· 25u
2
+ 5
a
10
=
4u
17
6u
16
+ ··· + 4u 6
3u
17
+ 4u
16
+ ··· 25u
2
+ 5
a
1
=
u
3
u
5
u
3
+ u
a
4
=
2u
17
6u
16
+ ··· 8u 2
u
17
4u
15
+ ··· + 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
17
+ 22u
16
+ 25u
15
68u
14
46u
13
+ 148u
12
+ 58u
11
256u
10
31u
9
+ 318u
8
64u
7
247u
6
+ 114u
5
+ 95u
4
79u
3
9u
2
+ 20u 12
10
(iv) u-Polynomials at the component
11
Crossings u-Polynomials at each crossing
c
1
u
18
8u
17
+ ··· 11u + 1
c
2
u
18
+ 2u
17
+ ··· + u + 1
c
3
u
18
u
17
+ ··· 2u + 1
c
4
u
18
+ 6u
16
+ ··· + 4u + 1
c
5
u
18
2u
17
+ ··· u + 1
c
6
u
18
+ u
17
+ ··· 3u + 1
c
7
u
18
+ 2u
17
+ ··· + 4u + 1
c
8
u
18
+ 3u
17
+ ··· u + 1
c
9
u
18
+ 6u
16
+ ··· 4u + 1
c
10
u
18
12u
17
+ ··· 2u + 1
c
11
u
18
u
17
+ ··· + 3u + 1
c
12
u
18
3u
17
+ ··· + u + 1
12
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 12y
17
+ ··· + 5y + 1
c
2
, c
5
y
18
8y
17
+ ··· 11y + 1
c
3
y
18
+ 17y
17
+ ··· + 22y + 1
c
4
, c
9
y
18
+ 12y
17
+ ··· + 2y + 1
c
6
, c
11
y
18
+ 7y
17
+ ··· + 13y + 1
c
7
y
18
+ 14y
17
+ ··· 22y + 1
c
8
, c
12
y
18
+ 13y
17
+ ··· + 7y + 1
c
10
y
18
4y
17
+ ··· 18y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.938607 + 0.177796I
a = 1.277810 + 0.352527I
b = 0.532976 0.231640I
1.49224 + 2.44774I 13.11338 3.83957I
u = 0.938607 0.177796I
a = 1.277810 0.352527I
b = 0.532976 + 0.231640I
1.49224 2.44774I 13.11338 + 3.83957I
u = 0.991070 + 0.379386I
a = 0.386409 + 0.925899I
b = 0.55160 + 1.88537I
2.57337 0.15300I 5.91487 + 0.60575I
u = 0.991070 0.379386I
a = 0.386409 0.925899I
b = 0.55160 1.88537I
2.57337 + 0.15300I 5.91487 0.60575I
u = 0.664659 + 0.594539I
a = 2.33242 0.85415I
b = 0.95795 + 1.08548I
0.212595 + 1.383300I 3.10748 + 0.84622I
u = 0.664659 0.594539I
a = 2.33242 + 0.85415I
b = 0.95795 1.08548I
0.212595 1.383300I 3.10748 0.84622I
u = 1.010780 + 0.560346I
a = 0.108550 + 1.284390I
b = 1.31489 + 1.78640I
1.34156 5.99798I 4.55960 + 7.13102I
u = 1.010780 0.560346I
a = 0.108550 1.284390I
b = 1.31489 1.78640I
1.34156 + 5.99798I 4.55960 7.13102I
u = 1.157390 + 0.449657I
a = 1.48723 + 0.18657I
b = 1.178190 + 0.178057I
1.91663 5.91874I 6.80744 + 5.83665I
u = 1.157390 0.449657I
a = 1.48723 0.18657I
b = 1.178190 0.178057I
1.91663 + 5.91874I 6.80744 5.83665I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.851063 + 0.965985I
a = 0.103785 + 0.850001I
b = 0.108161 + 0.557031I
7.22994 + 3.50970I 2.55016 2.04029I
u = 0.851063 0.965985I
a = 0.103785 0.850001I
b = 0.108161 0.557031I
7.22994 3.50970I 2.55016 + 2.04029I
u = 0.912172 + 0.926718I
a = 0.316703 + 0.525825I
b = 0.003727 0.356760I
5.15374 3.38704I 1.14776 + 3.09347I
u = 0.912172 0.926718I
a = 0.316703 0.525825I
b = 0.003727 + 0.356760I
5.15374 + 3.38704I 1.14776 3.09347I
u = 0.637201 + 0.247045I
a = 0.552936 + 0.306520I
b = 0.835105 + 1.116970I
4.10299 + 2.87051I 7.47106 1.58702I
u = 0.637201 0.247045I
a = 0.552936 0.306520I
b = 0.835105 1.116970I
4.10299 2.87051I 7.47106 + 1.58702I
u = 0.601462 + 0.303618I
a = 2.79057 + 1.63140I
b = 0.099665 + 0.804647I
1.26899 + 3.08403I 10.1238 9.9181I
u = 0.601462 0.303618I
a = 2.79057 1.63140I
b = 0.099665 0.804647I
1.26899 3.08403I 10.1238 + 9.9181I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
8u
17
+ ··· 11u + 1)(u
47
+ 9u
46
+ ··· + 10u + 1)
c
2
(u
18
+ 2u
17
+ ··· + u + 1)(u
47
+ 3u
46
+ ··· 5u
2
+ 1)
c
3
(u
18
u
17
+ ··· 2u + 1)(u
47
+ 32u
45
+ ··· + 305u + 3721)
c
4
(u
18
+ 6u
16
+ ··· + 4u + 1)(u
47
+ u
46
+ ··· 9u + 1)
c
5
(u
18
2u
17
+ ··· u + 1)(u
47
+ 3u
46
+ ··· 5u
2
+ 1)
c
6
(u
18
+ u
17
+ ··· 3u + 1)(u
47
+ 2u
46
+ ··· 1808u + 163)
c
7
(u
18
+ 2u
17
+ ··· + 4u + 1)(u
47
3u
46
+ ··· + 37265u + 230749)
c
8
(u
18
+ 3u
17
+ ··· u + 1)(u
47
+ 4u
46
+ ··· + 474u + 73)
c
9
(u
18
+ 6u
16
+ ··· 4u + 1)(u
47
+ u
46
+ ··· 9u + 1)
c
10
(u
18
12u
17
+ ··· 2u + 1)(u
47
35u
46
+ ··· + 37u + 1)
c
11
(u
18
u
17
+ ··· + 3u + 1)(u
47
+ 2u
46
+ ··· 1808u + 163)
c
12
(u
18
3u
17
+ ··· + u + 1)(u
47
+ 4u
46
+ ··· + 474u + 73)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
18
+ 12y
17
+ ··· + 5y + 1)(y
47
+ 67y
46
+ ··· 62y 1)
c
2
, c
5
(y
18
8y
17
+ ··· 11y + 1)(y
47
9y
46
+ ··· + 10y 1)
c
3
(y
18
+ 17y
17
+ ··· + 22y + 1)
· (y
47
+ 64y
46
+ ··· 273936299y 13845841)
c
4
, c
9
(y
18
+ 12y
17
+ ··· + 2y + 1)(y
47
+ 35y
46
+ ··· + 37y 1)
c
6
, c
11
(y
18
+ 7y
17
+ ··· + 13y + 1)(y
47
+ 46y
46
+ ··· + 1197786y 26569)
c
7
(y
18
+ 14y
17
+ ··· 22y + 1)
· (y
47
+ 97y
46
+ ··· 501554609163y 53245101001)
c
8
, c
12
(y
18
+ 13y
17
+ ··· + 7y + 1)(y
47
+ 46y
45
+ ··· + 210660y 5329)
c
10
(y
18
4y
17
+ ··· 18y + 1)(y
47
37y
46
+ ··· 1687y 1)
18