12n
0382
(K12n
0382
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 12 5 12 5 9 7 8
Solving Sequence
2,5
6
3,12
7 8 9 10 1 4 11
c
5
c
2
c
6
c
7
c
8
c
9
c
1
c
4
c
11
c
3
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−579753405694973u
23
472990592837092u
22
+ ··· + 1971269389223473b + 4407120302352329,
2.83690 × 10
15
u
23
+ 6.39000 × 10
15
u
22
+ ··· + 2.16840 × 10
16
a 5.46780 × 10
16
, u
24
+ 2u
23
+ ··· 7u 11i
I
u
2
= h−u
14
+ u
13
+ 3u
12
4u
11
6u
10
+ 9u
9
+ 7u
8
13u
7
6u
6
+ 12u
5
+ 2u
4
7u
3
+ b + u,
2u
14
+ u
13
+ 5u
12
4u
11
10u
10
+ 8u
9
+ 10u
8
10u
7
8u
6
+ 7u
5
2u
3
+ u
2
+ a u,
u
15
u
14
3u
13
+ 4u
12
+ 6u
11
9u
10
7u
9
+ 13u
8
+ 6u
7
13u
6
2u
5
+ 8u
4
3u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.80 × 10
14
u
23
4.73 × 10
14
u
22
+ · · · + 1.97 × 10
15
b + 4.41 ×
10
15
, 2.84 × 10
15
u
23
+ 6.39 × 10
15
u
22
+ · · · + 2.17 × 10
16
a 5.47 ×
10
16
, u
24
+ 2u
23
+ · · · 7u 11i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
12
=
0.130829u
23
0.294688u
22
+ ··· 1.59763u + 2.52159
0.294102u
23
+ 0.239942u
22
+ ··· + 0.00494916u 2.23568
a
7
=
0.534965u
23
0.416078u
22
+ ··· 0.624684u + 5.43098
0.310244u
23
0.272323u
22
+ ··· 0.324549u + 2.64692
a
8
=
0.224721u
23
0.143755u
22
+ ··· 0.300135u + 2.78406
0.310244u
23
0.272323u
22
+ ··· 0.324549u + 2.64692
a
9
=
0.201549u
23
+ 0.249559u
22
+ ··· 0.113316u 1.36979
0.111431u
23
0.128131u
22
+ ··· 0.277454u + 1.05051
a
10
=
0.312979u
23
+ 0.377690u
22
+ ··· + 0.164138u 2.42030
0.111431u
23
0.128131u
22
+ ··· 0.277454u + 1.05051
a
1
=
u
3
u
5
u
3
+ u
a
4
=
0.0617504u
23
0.0392309u
22
+ ··· 2.06682u + 0.542106
0.194220u
23
+ 0.176940u
22
+ ··· + 0.957672u 1.78638
a
11
=
0.0302642u
23
+ 0.0123334u
22
+ ··· + 0.976733u 1.03269
0.119247u
23
+ 0.191200u
22
+ ··· + 0.994406u 1.82283
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2580377549362014
1971269389223473
u
23
+
3507150554528052
1971269389223473
u
22
+ ··· +
45898132692487883
1971269389223473
u
44289338047701926
1971269389223473
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 16u
23
+ ··· + 819u + 121
c
2
, c
5
u
24
+ 2u
23
+ ··· 7u 11
c
3
u
24
+ 26u
22
+ ··· + 39u 11
c
4
, c
9
u
24
+ u
23
+ ··· + 51u + 43
c
6
, c
11
u
24
2u
23
+ ··· 472u 163
c
7
u
24
3u
23
+ ··· + 9u + 1
c
8
, c
12
u
24
+ 4u
23
+ ··· 138u 23
c
10
u
24
7u
23
+ ··· 667u + 1849
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
8y
23
+ ··· + 75809y + 14641
c
2
, c
5
y
24
16y
23
+ ··· 819y + 121
c
3
y
24
+ 52y
23
+ ··· 1015y + 121
c
4
, c
9
y
24
+ 7y
23
+ ··· + 667y + 1849
c
6
, c
11
y
24
+ 36y
23
+ ··· 234846y + 26569
c
7
y
24
47y
23
+ ··· + 113y + 1
c
8
, c
12
y
24
+ 34y
23
+ ··· 65412y + 529
c
10
y
24
+ 35y
23
+ ··· 209766481y + 3418801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.840681 + 0.490024I
a = 0.724162 + 0.569771I
b = 0.34121 + 1.49688I
2.96579 + 0.05300I 5.61914 0.01464I
u = 0.840681 0.490024I
a = 0.724162 0.569771I
b = 0.34121 1.49688I
2.96579 0.05300I 5.61914 + 0.01464I
u = 1.022560 + 0.295401I
a = 1.05742 + 2.52587I
b = 0.33303 + 1.71764I
3.54040 + 2.95826I 5.57765 4.27465I
u = 1.022560 0.295401I
a = 1.05742 2.52587I
b = 0.33303 1.71764I
3.54040 2.95826I 5.57765 + 4.27465I
u = 0.962010 + 0.650431I
a = 0.070965 1.233660I
b = 0.070549 0.869894I
7.79911 2.52001I 0.51262 + 2.53374I
u = 0.962010 0.650431I
a = 0.070965 + 1.233660I
b = 0.070549 + 0.869894I
7.79911 + 2.52001I 0.51262 2.53374I
u = 0.927407 + 0.744557I
a = 0.713189 + 0.275798I
b = 0.014139 0.602418I
8.76252 + 2.82949I 3.38778 2.96422I
u = 0.927407 0.744557I
a = 0.713189 0.275798I
b = 0.014139 + 0.602418I
8.76252 2.82949I 3.38778 + 2.96422I
u = 1.133700 + 0.502318I
a = 0.53485 + 1.45879I
b = 1.02104 + 1.23446I
2.58040 6.55097I 3.00232 + 8.95233I
u = 1.133700 0.502318I
a = 0.53485 1.45879I
b = 1.02104 1.23446I
2.58040 + 6.55097I 3.00232 8.95233I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.759420
a = 0.396801
b = 0.537831
1.01372 11.2860
u = 0.238482 + 1.223910I
a = 0.037299 0.531429I
b = 0.12489 1.74552I
9.56824 4.63986I 2.53665 + 1.77990I
u = 0.238482 1.223910I
a = 0.037299 + 0.531429I
b = 0.12489 + 1.74552I
9.56824 + 4.63986I 2.53665 1.77990I
u = 1.25828
a = 1.11711
b = 0.135805
0.844274 6.82360
u = 0.264664 + 0.670266I
a = 0.018243 0.736439I
b = 0.587531 + 0.857775I
0.06550 + 2.02589I 0.03613 4.27604I
u = 0.264664 0.670266I
a = 0.018243 + 0.736439I
b = 0.587531 0.857775I
0.06550 2.02589I 0.03613 + 4.27604I
u = 1.330090 + 0.222342I
a = 0.92490 + 1.09593I
b = 0.094519 + 1.136320I
4.70867 + 0.81596I 5.59655 0.54882I
u = 1.330090 0.222342I
a = 0.92490 1.09593I
b = 0.094519 1.136320I
4.70867 0.81596I 5.59655 + 0.54882I
u = 0.538622 + 0.352121I
a = 0.147046 + 1.001000I
b = 0.216583 0.106477I
0.98010 1.26540I 3.01329 + 5.29615I
u = 0.538622 0.352121I
a = 0.147046 1.001000I
b = 0.216583 + 0.106477I
0.98010 + 1.26540I 3.01329 5.29615I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.34887 + 0.69749I
a = 1.08996 1.58558I
b = 0.23003 1.81299I
13.0253 + 11.4321I 3.86498 4.79478I
u = 1.34887 0.69749I
a = 1.08996 + 1.58558I
b = 0.23003 + 1.81299I
13.0253 11.4321I 3.86498 + 4.79478I
u = 1.55966 + 0.42079I
a = 0.69697 1.79236I
b = 0.02142 1.78671I
15.5246 1.3214I 5.39704 + 0.62510I
u = 1.55966 0.42079I
a = 0.69697 + 1.79236I
b = 0.02142 + 1.78671I
15.5246 + 1.3214I 5.39704 0.62510I
7
II.
I
u
2
= h−u
14
+u
13
+· · ·+b+u, 2u
14
+u
13
+· · ·+au, u
15
u
14
+· · ·3u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
12
=
2u
14
u
13
+ ··· u
2
+ u
u
14
u
13
+ ··· + 7u
3
u
a
7
=
u
14
u
13
+ ··· u + 3
u
12
+ 3u
10
u
9
6u
8
+ 2u
7
+ 7u
6
3u
5
6u
4
+ 2u
3
+ 2u
2
u
a
8
=
u
14
u
13
+ ··· 9u
2
+ 3
u
12
+ 3u
10
u
9
6u
8
+ 2u
7
+ 7u
6
3u
5
6u
4
+ 2u
3
+ 2u
2
u
a
9
=
u
14
2u
13
+ ··· + 2u + 2
u
13
+ 3u
11
u
10
7u
9
+ 2u
8
+ 9u
7
4u
6
9u
5
+ 3u
4
+ 4u
3
2u
2
u
a
10
=
u
14
u
13
+ ··· + 3u + 2
u
13
+ 3u
11
u
10
7u
9
+ 2u
8
+ 9u
7
4u
6
9u
5
+ 3u
4
+ 4u
3
2u
2
u
a
1
=
u
3
u
5
u
3
+ u
a
4
=
u
14
+ 5u
12
+ ··· + 3u + 4
u
14
+ 3u
12
7u
10
+ 10u
8
11u
6
+ 7u
4
3u
2
+ u + 2
a
11
=
4u
14
11u
12
+ ··· u 1
u
14
3u
12
+ ··· + 3u
3
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
12
u
11
+ 3u
10
+ u
9
5u
8
4u
7
+ 7u
6
+ 4u
5
7u
4
3u
3
+ 5u
2
2u 4
8
(iv) u-Polynomials at the component
9
Crossings u-Polynomials at each crossing
c
1
u
15
7u
14
+ ··· + 6u 1
c
2
u
15
+ u
14
+ ··· + 3u
2
1
c
3
u
15
u
14
+ ··· 2u 1
c
4
u
15
+ 8u
13
+ ··· + 4u + 1
c
5
u
15
u
14
+ ··· 3u
2
+ 1
c
6
u
15
u
14
+ ··· + 3u + 1
c
7
u
15
+ 2u
14
+ ··· + 4u + 1
c
8
u
15
+ 3u
14
+ ··· u + 1
c
9
u
15
+ 8u
13
+ ··· + 4u 1
c
10
u
15
16u
14
+ ··· + 4u + 1
c
11
u
15
+ u
14
+ ··· + 3u 1
c
12
u
15
3u
14
+ ··· u 1
10
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ 9y
14
+ ··· 14y 1
c
2
, c
5
y
15
7y
14
+ ··· + 6y 1
c
3
y
15
+ 29y
14
+ ··· 14y 1
c
4
, c
9
y
15
+ 16y
14
+ ··· + 4y 1
c
6
, c
11
y
15
3y
14
+ ··· + y 1
c
7
y
15
2y
14
+ ··· + 18y 1
c
8
, c
12
y
15
y
14
+ ··· + 3y 1
c
10
y
15
20y
14
+ ··· + 252y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.899781 + 0.286994I
a = 0.44937 + 1.89015I
b = 0.304958 + 0.973459I
6.68911 1.23661I 4.15485 0.98307I
u = 0.899781 0.286994I
a = 0.44937 1.89015I
b = 0.304958 0.973459I
6.68911 + 1.23661I 4.15485 + 0.98307I
u = 0.893982
a = 0.674370
b = 0.525910
0.237359 1.17550
u = 0.896890 + 0.731944I
a = 0.254396 0.626802I
b = 0.153159 + 0.059677I
9.57728 + 2.79903I 7.57416 2.89020I
u = 0.896890 0.731944I
a = 0.254396 + 0.626802I
b = 0.153159 0.059677I
9.57728 2.79903I 7.57416 + 2.89020I
u = 1.107400 + 0.432221I
a = 1.13757 + 1.78331I
b = 0.01538 + 1.93584I
4.12042 + 1.58492I 8.26166 0.30703I
u = 1.107400 0.432221I
a = 1.13757 1.78331I
b = 0.01538 1.93584I
4.12042 1.58492I 8.26166 + 0.30703I
u = 0.550933 + 0.586599I
a = 0.901557 0.875340I
b = 0.45418 + 1.47368I
1.53674 + 1.05029I 3.10144 0.84326I
u = 0.550933 0.586599I
a = 0.901557 + 0.875340I
b = 0.45418 1.47368I
1.53674 1.05029I 3.10144 + 0.84326I
u = 1.096940 + 0.544029I
a = 1.21180 + 1.50559I
b = 0.72158 + 1.69669I
3.32611 5.65603I 6.88663 + 4.31157I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.096940 0.544029I
a = 1.21180 1.50559I
b = 0.72158 1.69669I
3.32611 + 5.65603I 6.88663 4.31157I
u = 0.914301 + 0.849307I
a = 0.569444 0.431437I
b = 0.039917 0.985105I
6.12893 3.15877I 4.60445 + 3.34743I
u = 0.914301 0.849307I
a = 0.569444 + 0.431437I
b = 0.039917 + 0.985105I
6.12893 + 3.15877I 4.60445 3.34743I
u = 0.510671 + 0.420907I
a = 1.53976 + 1.37826I
b = 0.12754 + 1.51005I
2.01618 + 2.10877I 1.65286 2.85205I
u = 0.510671 0.420907I
a = 1.53976 1.37826I
b = 0.12754 1.51005I
2.01618 2.10877I 1.65286 + 2.85205I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
7u
14
+ ··· + 6u 1)(u
24
+ 16u
23
+ ··· + 819u + 121)
c
2
(u
15
+ u
14
+ ··· + 3u
2
1)(u
24
+ 2u
23
+ ··· 7u 11)
c
3
(u
15
u
14
+ ··· 2u 1)(u
24
+ 26u
22
+ ··· + 39u 11)
c
4
(u
15
+ 8u
13
+ ··· + 4u + 1)(u
24
+ u
23
+ ··· + 51u + 43)
c
5
(u
15
u
14
+ ··· 3u
2
+ 1)(u
24
+ 2u
23
+ ··· 7u 11)
c
6
(u
15
u
14
+ ··· + 3u + 1)(u
24
2u
23
+ ··· 472u 163)
c
7
(u
15
+ 2u
14
+ ··· + 4u + 1)(u
24
3u
23
+ ··· + 9u + 1)
c
8
(u
15
+ 3u
14
+ ··· u + 1)(u
24
+ 4u
23
+ ··· 138u 23)
c
9
(u
15
+ 8u
13
+ ··· + 4u 1)(u
24
+ u
23
+ ··· + 51u + 43)
c
10
(u
15
16u
14
+ ··· + 4u + 1)(u
24
7u
23
+ ··· 667u + 1849)
c
11
(u
15
+ u
14
+ ··· + 3u 1)(u
24
2u
23
+ ··· 472u 163)
c
12
(u
15
3u
14
+ ··· u 1)(u
24
+ 4u
23
+ ··· 138u 23)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
15
+ 9y
14
+ ··· 14y 1)(y
24
8y
23
+ ··· + 75809y + 14641)
c
2
, c
5
(y
15
7y
14
+ ··· + 6y 1)(y
24
16y
23
+ ··· 819y + 121)
c
3
(y
15
+ 29y
14
+ ··· 14y 1)(y
24
+ 52y
23
+ ··· 1015y + 121)
c
4
, c
9
(y
15
+ 16y
14
+ ··· + 4y 1)(y
24
+ 7y
23
+ ··· + 667y + 1849)
c
6
, c
11
(y
15
3y
14
+ ··· + y 1)(y
24
+ 36y
23
+ ··· 234846y + 26569)
c
7
(y
15
2y
14
+ ··· + 18y 1)(y
24
47y
23
+ ··· + 113y + 1)
c
8
, c
12
(y
15
y
14
+ ··· + 3y 1)(y
24
+ 34y
23
+ ··· 65412y + 529)
c
10
(y
15
20y
14
+ ··· + 252y 1)
· (y
24
+ 35y
23
+ ··· 209766481y + 3418801)
16