12n
0385
(K12n
0385
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 12 5 12 11 4 7 8
Solving Sequence
6,12 3,7
2 1 5 8 4 9 11 10
c
6
c
2
c
1
c
5
c
7
c
3
c
8
c
11
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.29531 × 10
124
u
55
5.17327 × 10
124
u
54
+ ··· + 4.70448 × 10
122
b + 9.01469 × 10
124
,
7.90126 × 10
124
u
55
+ 1.78040 × 10
125
u
54
+ ··· + 4.70448 × 10
122
a 3.09074 × 10
125
, u
56
+ 2u
55
+ ··· 15u + 1i
I
u
2
= h126249067u
19
438214333u
18
+ ··· + 593361451b + 602467017,
1023562993u
19
+ 1683425057u
18
+ ··· + 593361451a + 2283136733, u
20
u
19
+ ··· u + 1i
* 2 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.30 × 10
124
u
55
5.17 × 10
124
u
54
+ · · · + 4.70 × 10
122
b + 9.01 ×
10
124
, 7.90 × 10
124
u
55
+ 1.78 × 10
125
u
54
+ · · · + 4.70 × 10
122
a 3.09 ×
10
125
, u
56
+ 2u
55
+ · · · 15u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
167.952u
55
378.447u
54
+ ··· 7319.21u + 656.977
48.7899u
55
+ 109.965u
54
+ ··· + 2128.78u 191.619
a
7
=
1
u
2
a
2
=
119.162u
55
268.482u
54
+ ··· 5190.43u + 465.357
48.7899u
55
+ 109.965u
54
+ ··· + 2128.78u 191.619
a
1
=
50.7952u
55
+ 115.863u
54
+ ··· + 2093.41u 184.274
35.5785u
55
80.8855u
54
+ ··· 1476.67u + 130.375
a
5
=
145.156u
55
329.196u
54
+ ··· 6101.43u + 545.139
87.4444u
55
+ 197.890u
54
+ ··· + 3716.70u 332.270
a
8
=
21.0734u
55
+ 49.2382u
54
+ ··· + 731.326u 59.8342
19.6677u
55
45.0556u
54
+ ··· 774.695u + 66.8772
a
4
=
332.270u
55
+ 751.984u
54
+ ··· + 14152.1u 1267.35
185.312u
55
419.091u
54
+ ··· 7917.98u + 708.943
a
9
=
21.0734u
55
+ 49.2382u
54
+ ··· + 731.326u 59.8342
21.9298u
55
50.2637u
54
+ ··· 859.993u + 73.9686
a
11
=
u
u
3
+ u
a
10
=
20.4358u
55
+ 47.7320u
54
+ ··· + 712.161u 58.4629
21.2114u
55
48.5599u
54
+ ··· 838.002u + 72.3663
(ii) Obstruction class = 1
(iii) Cusp Shapes = 217.435u
55
492.105u
54
+ ··· 9258.95u + 822.622
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
56
+ 13u
55
+ ··· + u + 1
c
2
, c
5
u
56
+ 3u
55
+ ··· 7u + 1
c
3
u
56
+ 2u
55
+ ··· + 43738u + 6847
c
4
, c
10
u
56
+ u
55
+ ··· + 130u + 43
c
6
, c
11
u
56
2u
55
+ ··· + 15u + 1
c
7
u
56
+ u
55
+ ··· 8u + 19
c
8
, c
12
u
56
+ 8u
55
+ ··· + 25217681u + 3589991
c
9
u
56
+ 21u
55
+ ··· + 36162u + 1849
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
56
+ 67y
55
+ ··· 305y + 1
c
2
, c
5
y
56
13y
55
+ ··· y + 1
c
3
y
56
+ 76y
55
+ ··· + 2879627170y + 46881409
c
4
, c
10
y
56
+ 21y
55
+ ··· + 36162y + 1849
c
6
, c
11
y
56
+ 6y
55
+ ··· 25y + 1
c
7
y
56
9y
55
+ ··· + 17302y + 361
c
8
, c
12
y
56
78y
55
+ ··· + 166741384065503y + 12888035380081
c
9
y
56
+ 49y
55
+ ··· 27712598y + 3418801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.662954 + 0.763312I
a = 0.109755 + 0.857727I
b = 0.710096 0.628504I
0.01661 + 7.26026I 0. 10.22253I
u = 0.662954 0.763312I
a = 0.109755 0.857727I
b = 0.710096 + 0.628504I
0.01661 7.26026I 0. + 10.22253I
u = 0.666863 + 0.770647I
a = 0.887690 0.725522I
b = 0.221964 + 0.922686I
1.78699 2.38449I 0
u = 0.666863 0.770647I
a = 0.887690 + 0.725522I
b = 0.221964 0.922686I
1.78699 + 2.38449I 0
u = 0.865491 + 0.431238I
a = 0.37766 3.20632I
b = 0.415607 + 0.220395I
1.50834 + 5.13908I 1.64354 9.78620I
u = 0.865491 0.431238I
a = 0.37766 + 3.20632I
b = 0.415607 0.220395I
1.50834 5.13908I 1.64354 + 9.78620I
u = 0.694616 + 0.641622I
a = 0.163620 + 0.995740I
b = 0.598031 0.619979I
2.04092 2.37552I 3.14853 + 4.55601I
u = 0.694616 0.641622I
a = 0.163620 0.995740I
b = 0.598031 + 0.619979I
2.04092 + 2.37552I 3.14853 4.55601I
u = 0.888013 + 0.699797I
a = 0.138881 0.344888I
b = 0.838168 + 0.413727I
0.60327 + 3.12252I 0
u = 0.888013 0.699797I
a = 0.138881 + 0.344888I
b = 0.838168 0.413727I
0.60327 3.12252I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.190436 + 1.123830I
a = 0.444310 + 0.527604I
b = 0.365972 + 0.069044I
4.50386 1.21393I 0
u = 0.190436 1.123830I
a = 0.444310 0.527604I
b = 0.365972 0.069044I
4.50386 + 1.21393I 0
u = 0.855002 + 0.041630I
a = 1.26036 + 1.03025I
b = 0.064318 0.244656I
1.51091 0.09931I 7.48576 0.57256I
u = 0.855002 0.041630I
a = 1.26036 1.03025I
b = 0.064318 + 0.244656I
1.51091 + 0.09931I 7.48576 + 0.57256I
u = 1.154250 + 0.028922I
a = 0.67805 + 1.69251I
b = 0.898070 0.760890I
4.21997 + 2.88917I 0
u = 1.154250 0.028922I
a = 0.67805 1.69251I
b = 0.898070 + 0.760890I
4.21997 2.88917I 0
u = 0.298553 + 0.783068I
a = 1.47696 + 1.31436I
b = 1.216760 0.521960I
1.71963 + 1.34220I 1.33019 5.27887I
u = 0.298553 0.783068I
a = 1.47696 1.31436I
b = 1.216760 + 0.521960I
1.71963 1.34220I 1.33019 + 5.27887I
u = 0.236859 + 1.215390I
a = 0.760833 0.660762I
b = 0.479782 + 0.683588I
3.22157 1.15649I 0
u = 0.236859 1.215390I
a = 0.760833 + 0.660762I
b = 0.479782 0.683588I
3.22157 + 1.15649I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.221310 + 0.412682I
a = 0.141595 0.224601I
b = 0.965402 + 0.220051I
0.709733 + 0.991277I 0
u = 1.221310 0.412682I
a = 0.141595 + 0.224601I
b = 0.965402 0.220051I
0.709733 0.991277I 0
u = 0.681846 + 0.011526I
a = 3.05207 2.44743I
b = 0.446392 + 0.849165I
1.13214 4.01858I 5.94853 + 4.16003I
u = 0.681846 0.011526I
a = 3.05207 + 2.44743I
b = 0.446392 0.849165I
1.13214 + 4.01858I 5.94853 4.16003I
u = 0.529724 + 0.424634I
a = 0.48742 + 1.49607I
b = 0.811392 + 0.067619I
3.17521 + 4.65332I 7.74651 6.05847I
u = 0.529724 0.424634I
a = 0.48742 1.49607I
b = 0.811392 0.067619I
3.17521 4.65332I 7.74651 + 6.05847I
u = 0.153495 + 1.312610I
a = 1.18611 + 0.82511I
b = 0.994161 0.290702I
6.82465 2.95148I 0
u = 0.153495 1.312610I
a = 1.18611 0.82511I
b = 0.994161 + 0.290702I
6.82465 + 2.95148I 0
u = 1.054190 + 0.817175I
a = 1.74185 + 1.23072I
b = 0.915264 1.067760I
10.62210 + 1.04027I 0
u = 1.054190 0.817175I
a = 1.74185 1.23072I
b = 0.915264 + 1.067760I
10.62210 1.04027I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.716286 + 1.170940I
a = 0.257562 + 1.315470I
b = 1.281030 0.421786I
1.88294 7.50272I 0
u = 0.716286 1.170940I
a = 0.257562 1.315470I
b = 1.281030 + 0.421786I
1.88294 + 7.50272I 0
u = 1.085940 + 0.879913I
a = 0.23842 2.61162I
b = 1.07014 + 0.95854I
10.09000 + 8.41326I 0
u = 1.085940 0.879913I
a = 0.23842 + 2.61162I
b = 1.07014 0.95854I
10.09000 8.41326I 0
u = 0.87694 + 1.16695I
a = 0.46590 1.84575I
b = 0.910716 + 0.995484I
9.48260 + 6.10181I 0
u = 0.87694 1.16695I
a = 0.46590 + 1.84575I
b = 0.910716 0.995484I
9.48260 6.10181I 0
u = 0.201309 + 0.484082I
a = 5.17876 2.75312I
b = 0.764547 + 1.016520I
0.36376 4.79110I 12.4271 + 7.9106I
u = 0.201309 0.484082I
a = 5.17876 + 2.75312I
b = 0.764547 1.016520I
0.36376 + 4.79110I 12.4271 7.9106I
u = 0.41214 + 1.42834I
a = 0.36344 + 1.45804I
b = 1.088950 0.558550I
5.09935 + 3.68934I 0
u = 0.41214 1.42834I
a = 0.36344 1.45804I
b = 1.088950 + 0.558550I
5.09935 3.68934I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.92562 + 1.19150I
a = 0.86660 + 1.42318I
b = 1.030690 0.930366I
9.09077 0.96024I 0
u = 0.92562 1.19150I
a = 0.86660 1.42318I
b = 1.030690 + 0.930366I
9.09077 + 0.96024I 0
u = 0.107311 + 0.465903I
a = 0.942601 + 0.990213I
b = 0.847141 0.344738I
1.82336 + 0.66526I 4.71538 3.25851I
u = 0.107311 0.465903I
a = 0.942601 0.990213I
b = 0.847141 + 0.344738I
1.82336 0.66526I 4.71538 + 3.25851I
u = 1.06310 + 1.14192I
a = 1.29601 + 1.16872I
b = 0.831104 1.076510I
9.09155 8.12513I 0
u = 1.06310 1.14192I
a = 1.29601 1.16872I
b = 0.831104 + 1.076510I
9.09155 + 8.12513I 0
u = 1.20609 + 1.00543I
a = 0.48936 1.88232I
b = 0.819158 + 1.011510I
9.61530 0.06348I 0
u = 1.20609 1.00543I
a = 0.48936 + 1.88232I
b = 0.819158 1.011510I
9.61530 + 0.06348I 0
u = 1.08874 + 1.16941I
a = 0.13787 2.22801I
b = 1.10246 + 0.90357I
8.1820 15.3204I 0
u = 1.08874 1.16941I
a = 0.13787 + 2.22801I
b = 1.10246 0.90357I
8.1820 + 15.3204I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.27615 + 1.03922I
a = 0.86060 + 1.41837I
b = 1.082350 0.866720I
8.74803 + 6.83361I 0
u = 1.27615 1.03922I
a = 0.86060 1.41837I
b = 1.082350 + 0.866720I
8.74803 6.83361I 0
u = 0.219793 + 0.185855I
a = 4.45335 0.50756I
b = 0.925176 + 0.237900I
1.68718 0.25895I 4.50240 0.85249I
u = 0.219793 0.185855I
a = 4.45335 + 0.50756I
b = 0.925176 0.237900I
1.68718 + 0.25895I 4.50240 + 0.85249I
u = 0.261423 + 0.003508I
a = 1.73394 2.85481I
b = 0.905464 + 0.831639I
4.59695 + 3.10196I 6.56843 3.78158I
u = 0.261423 0.003508I
a = 1.73394 + 2.85481I
b = 0.905464 0.831639I
4.59695 3.10196I 6.56843 + 3.78158I
10
II.
I
u
2
= h1.26 × 10
8
u
19
4.38 × 10
8
u
18
+ · · · + 5.93 × 10
8
b + 6.02 × 10
8
, 1.02 ×
10
9
u
19
+ 1.68 × 10
9
u
18
+ · · · + 5.93 × 10
8
a + 2.28 × 10
9
, u
20
u
19
+ · · · u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
1.72502u
19
2.83710u
18
+ ··· 5.51268u 3.84780
0.212769u
19
+ 0.738528u
18
+ ··· + 1.78694u 1.01535
a
7
=
1
u
2
a
2
=
1.51226u
19
2.09857u
18
+ ··· 3.72574u 4.86315
0.212769u
19
+ 0.738528u
18
+ ··· + 1.78694u 1.01535
a
1
=
u
18
4u
16
+ ··· 12u 6
1.14159u
19
1.40554u
18
+ ··· 0.857291u 1.04241
a
5
=
1.41283u
19
0.466556u
18
+ ··· + 7.01592u 3.71394
0.650572u
19
1.01233u
18
+ ··· 0.860745u + 1.30063
a
8
=
u
19
4u
17
+ ··· 12u
2
6u
0.263948u
19
+ 0.440918u
18
+ ··· + 0.0991862u 1.14159
a
4
=
1.30063u
19
+ 1.95120u
18
+ ··· + 5.94534u + 0.439886
1.56096u
19
3.14489u
18
+ ··· 5.50991u + 2.86901
a
9
=
u
19
4u
17
+ ··· 12u
2
6u
0.263948u
19
+ 0.440918u
18
+ ··· + 0.0991862u 2.14159
a
11
=
u
u
3
+ u
a
10
=
0.870938u
19
0.0534748u
18
+ ··· 6.44092u 0.823030
0.403352u
19
+ 0.575848u
18
+ ··· + 0.593579u 1.24298
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3555961983
593361451
u
19
+
2757595505
593361451
u
18
+ ···
5543396896
593361451
u +
1259815944
593361451
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
20
10u
19
+ ··· 11u + 1
c
2
u
20
5u
18
+ ··· + u + 1
c
3
u
20
+ u
19
+ ··· 18u + 29
c
4
u
20
+ 6u
18
+ ··· 2u + 1
c
5
u
20
5u
18
+ ··· u + 1
c
6
u
20
u
19
+ ··· u + 1
c
7
u
20
+ 2u
19
+ ··· + 2u + 1
c
8
u
20
u
19
+ ··· u + 1
c
9
u
20
12u
19
+ ··· 12u + 1
c
10
u
20
+ 6u
18
+ ··· + 2u + 1
c
11
u
20
+ u
19
+ ··· + u + 1
c
12
u
20
+ u
19
+ ··· + u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 6y
19
+ ··· + 5y + 1
c
2
, c
5
y
20
10y
19
+ ··· 11y + 1
c
3
y
20
+ 7y
19
+ ··· + 2576y + 841
c
4
, c
10
y
20
+ 12y
19
+ ··· + 12y + 1
c
6
, c
11
y
20
+ 9y
19
+ ··· + y + 1
c
7
y
20
18y
19
+ ··· 16y + 1
c
8
, c
12
y
20
+ y
19
+ ··· + 9y + 1
c
9
y
20
+ 12y
19
+ ··· + 8y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.977898 + 0.441216I
a = 0.11731 1.61850I
b = 0.674570 + 0.231745I
1.72530 + 4.24965I 3.26588 2.33166I
u = 0.977898 0.441216I
a = 0.11731 + 1.61850I
b = 0.674570 0.231745I
1.72530 4.24965I 3.26588 + 2.33166I
u = 1.076060 + 0.058214I
a = 0.160408 0.538138I
b = 0.805721 + 0.086002I
0.528220 + 0.140723I 2.50468 + 1.63082I
u = 1.076060 0.058214I
a = 0.160408 + 0.538138I
b = 0.805721 0.086002I
0.528220 0.140723I 2.50468 1.63082I
u = 0.087264 + 1.114970I
a = 0.667120 0.276565I
b = 0.609605 + 0.520631I
3.84868 0.50039I 4.16213 1.44471I
u = 0.087264 1.114970I
a = 0.667120 + 0.276565I
b = 0.609605 0.520631I
3.84868 + 0.50039I 4.16213 + 1.44471I
u = 0.385593 + 1.095040I
a = 0.892880 0.744846I
b = 0.614448 + 0.455281I
4.07608 2.12478I 4.95751 + 6.84383I
u = 0.385593 1.095040I
a = 0.892880 + 0.744846I
b = 0.614448 0.455281I
4.07608 + 2.12478I 4.95751 6.84383I
u = 0.782687 + 0.053190I
a = 0.68017 + 1.64534I
b = 0.901068 0.798573I
5.14619 + 3.00289I 9.39397 1.79457I
u = 0.782687 0.053190I
a = 0.68017 1.64534I
b = 0.901068 + 0.798573I
5.14619 3.00289I 9.39397 + 1.79457I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.781642 + 0.941987I
a = 0.20384 + 1.85338I
b = 1.084510 0.387004I
3.42619 + 7.04333I 5.70410 7.29708I
u = 0.781642 0.941987I
a = 0.20384 1.85338I
b = 1.084510 + 0.387004I
3.42619 7.04333I 5.70410 + 7.29708I
u = 0.283961 + 0.610275I
a = 2.13713 + 3.17616I
b = 1.252840 0.458676I
2.20020 1.12205I 13.00820 + 1.65018I
u = 0.283961 0.610275I
a = 2.13713 3.17616I
b = 1.252840 + 0.458676I
2.20020 + 1.12205I 13.00820 1.65018I
u = 0.20797 + 1.48001I
a = 0.568940 + 1.193110I
b = 1.050630 0.501085I
5.33797 4.70204I 5.36335 + 8.18569I
u = 0.20797 1.48001I
a = 0.568940 1.193110I
b = 1.050630 + 0.501085I
5.33797 + 4.70204I 5.36335 8.18569I
u = 0.312824 + 0.305189I
a = 6.00260 1.71848I
b = 0.599146 + 0.975616I
0.75185 + 4.88757I 6.59227 12.27741I
u = 0.312824 0.305189I
a = 6.00260 + 1.71848I
b = 0.599146 0.975616I
0.75185 4.88757I 6.59227 + 12.27741I
u = 0.47998 + 1.50322I
a = 0.453856 + 1.329260I
b = 1.043350 0.471419I
5.55104 + 1.76510I 3.52040 0.02107I
u = 0.47998 1.50322I
a = 0.453856 1.329260I
b = 1.043350 + 0.471419I
5.55104 1.76510I 3.52040 + 0.02107I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
10u
19
+ ··· 11u + 1)(u
56
+ 13u
55
+ ··· + u + 1)
c
2
(u
20
5u
18
+ ··· + u + 1)(u
56
+ 3u
55
+ ··· 7u + 1)
c
3
(u
20
+ u
19
+ ··· 18u + 29)(u
56
+ 2u
55
+ ··· + 43738u + 6847)
c
4
(u
20
+ 6u
18
+ ··· 2u + 1)(u
56
+ u
55
+ ··· + 130u + 43)
c
5
(u
20
5u
18
+ ··· u + 1)(u
56
+ 3u
55
+ ··· 7u + 1)
c
6
(u
20
u
19
+ ··· u + 1)(u
56
2u
55
+ ··· + 15u + 1)
c
7
(u
20
+ 2u
19
+ ··· + 2u + 1)(u
56
+ u
55
+ ··· 8u + 19)
c
8
(u
20
u
19
+ ··· u + 1)(u
56
+ 8u
55
+ ··· + 2.52177 × 10
7
u + 3589991)
c
9
(u
20
12u
19
+ ··· 12u + 1)(u
56
+ 21u
55
+ ··· + 36162u + 1849)
c
10
(u
20
+ 6u
18
+ ··· + 2u + 1)(u
56
+ u
55
+ ··· + 130u + 43)
c
11
(u
20
+ u
19
+ ··· + u + 1)(u
56
2u
55
+ ··· + 15u + 1)
c
12
(u
20
+ u
19
+ ··· + u + 1)(u
56
+ 8u
55
+ ··· + 2.52177 × 10
7
u + 3589991)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 6y
19
+ ··· + 5y + 1)(y
56
+ 67y
55
+ ··· 305y + 1)
c
2
, c
5
(y
20
10y
19
+ ··· 11y + 1)(y
56
13y
55
+ ··· y + 1)
c
3
(y
20
+ 7y
19
+ ··· + 2576y + 841)
· (y
56
+ 76y
55
+ ··· + 2879627170y + 46881409)
c
4
, c
10
(y
20
+ 12y
19
+ ··· + 12y + 1)(y
56
+ 21y
55
+ ··· + 36162y + 1849)
c
6
, c
11
(y
20
+ 9y
19
+ ··· + y + 1)(y
56
+ 6y
55
+ ··· 25y + 1)
c
7
(y
20
18y
19
+ ··· 16y + 1)(y
56
9y
55
+ ··· + 17302y + 361)
c
8
, c
12
(y
20
+ y
19
+ ··· + 9y + 1)
· (y
56
78y
55
+ ··· + 166741384065503y + 12888035380081)
c
9
(y
20
+ 12y
19
+ ··· + 8y + 1)
· (y
56
+ 49y
55
+ ··· 27712598y + 3418801)
19