12n
0386
(K12n
0386
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 12 3 11 4 9 6 7
Solving Sequence
6,11
12
3,7
8 9 2 1 5 10 4
c
11
c
6
c
7
c
8
c
2
c
1
c
5
c
10
c
4
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
11
3u
10
13u
9
+ 39u
8
+ 46u
7
146u
6
+ 10u
5
54u
4
15u
3
91u
2
+ 32b + 3u 1, a 1,
u
13
3u
12
14u
11
+ 42u
10
+ 59u
9
185u
8
36u
7
+ 92u
6
25u
5
5u
4
+ 18u
3
6u
2
3u + 1i
I
u
2
= hb
4
b
2
+ 2, a + 1, u 1i
I
u
3
= hb 1, a + 1, u 1i
I
u
4
= hb + 1, a + 1, u 1i
I
u
5
= hb 1, a, u + 1i
I
u
6
= hb, a + 1, u + 1i
I
u
7
= hb
4
+ 1, a + 1, u + 1i
I
v
1
= ha, b 1, v 1i
* 8 irreducible components of dim
C
= 0, with total 26 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
11
3u
10
+ · · · + 32b 1, a 1, u
13
3u
12
+ · · · 3u + 1i
(i) Arc colorings
a
6
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
3
=
1
0.0312500u
11
+ 0.0937500u
10
+ ··· 0.0937500u + 0.0312500
a
7
=
u
u
3
+ u
a
8
=
0.0312500u
12
0.0937500u
11
+ ··· + 0.0937500u
2
2.03125u
7
32
u
12
11
16
u
11
+ ··· +
5
8
u +
1
32
a
9
=
0.187500u
12
+ 0.593750u
11
+ ··· 2.65625u 0.0312500
7
32
u
12
11
16
u
11
+ ··· +
5
8
u +
1
32
a
2
=
1
0.0312500u
11
+ 0.0937500u
10
+ ··· 0.0937500u + 0.0312500
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
u
0.0312500u
12
+ 0.0937500u
11
+ ··· 0.0937500u
2
+ 1.03125u
a
10
=
9
16
u
12
31
16
u
11
+ ··· 4u + 2
0.812500u
12
+ 3.31250u
11
+ ··· + 7.50000u 2.06250
a
4
=
0.0312500u
12
+ 0.281250u
11
+ ··· + 0.781250u + 0.750000
0.218750u
12
+ 1.09375u
11
+ ··· + 2.71875u 0.812500
(ii) Obstruction class = 1
(iii) Cusp Shapes =
35
16
u
12
+
145
16
u
11
+
353
16
u
10
1973
16
u
9
21
2
u
8
+
4023
8
u
7
3425
8
u
6
643
8
u
5
+
3897
16
u
4
2063
16
u
3
+
161
16
u
2
+
651
16
u
231
8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ 37u
12
+ ··· + 21u + 1
c
2
, c
5
, c
6
c
11
, c
12
u
13
+ 3u
12
+ ··· 3u 1
c
3
, c
7
u
13
5u
12
+ ··· + 36u + 26
c
4
, c
9
u
13
+ 3u
12
+ ··· + 8u + 2
c
8
, c
10
u
13
+ 5u
12
+ ··· + 32u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
237y
12
+ ··· + 173y 1
c
2
, c
5
, c
6
c
11
, c
12
y
13
37y
12
+ ··· + 21y 1
c
3
, c
7
y
13
65y
12
+ ··· 5360y 676
c
4
, c
9
y
13
5y
12
+ ··· + 32y 4
c
8
, c
10
y
13
+ 7y
12
+ ··· + 480y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.584997 + 0.104914I
a = 1.00000
b = 1.224250 0.653734I
0.88948 + 5.75156I 12.6714 7.2274I
u = 0.584997 0.104914I
a = 1.00000
b = 1.224250 + 0.653734I
0.88948 5.75156I 12.6714 + 7.2274I
u = 0.140736 + 0.561263I
a = 1.00000
b = 0.773695 + 0.343562I
1.39701 2.29590I 8.94612 + 4.81765I
u = 0.140736 0.561263I
a = 1.00000
b = 0.773695 0.343562I
1.39701 + 2.29590I 8.94612 4.81765I
u = 0.571799
a = 1.00000
b = 1.29852
4.92305 18.0630
u = 0.530717 + 0.126593I
a = 1.00000
b = 0.900850 + 0.616546I
0.109607 0.527741I 11.42537 + 2.37191I
u = 0.530717 0.126593I
a = 1.00000
b = 0.900850 0.616546I
0.109607 + 0.527741I 11.42537 2.37191I
u = 0.297204
a = 1.00000
b = 0.282107
0.561817 17.7590
u = 2.49582 + 0.80059I
a = 1.00000
b = 3.34031 + 4.21214I
16.3066 9.5421I 15.4017 + 4.1459I
u = 2.49582 0.80059I
a = 1.00000
b = 3.34031 4.21214I
16.3066 + 9.5421I 15.4017 4.1459I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.63506 + 0.50378I
a = 1.00000
b = 4.40111 2.78969I
18.2542 + 3.1219I 13.76946 0.20883I
u = 2.63506 0.50378I
a = 1.00000
b = 4.40111 + 2.78969I
18.2542 3.1219I 13.76946 + 0.20883I
u = 3.38017
a = 1.00000
b = 9.23373
10.7959 17.7500
6
II. I
u
2
= hb
4
b
2
+ 2, a + 1, u 1i
(i) Arc colorings
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
b
a
7
=
1
0
a
8
=
b 1
b
2
a
9
=
b
2
+ b 1
b
2
a
2
=
1
b + 1
a
1
=
0
1
a
5
=
1
b
a
10
=
b
3
1
b
2
+ 2
a
4
=
b
2
b 1
b
3
+ b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
2
20
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
4
c
2
, c
6
(u + 1)
4
c
3
, c
4
, c
7
c
9
u
4
u
2
+ 2
c
8
(u
2
u + 2)
2
c
10
(u
2
+ u + 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
y + 2)
2
c
8
, c
10
(y
2
+ 3y + 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.978318 + 0.676097I
2.46740 5.33349I 18.0000 + 5.2915I
u = 1.00000
a = 1.00000
b = 0.978318 0.676097I
2.46740 + 5.33349I 18.0000 5.2915I
u = 1.00000
a = 1.00000
b = 0.978318 + 0.676097I
2.46740 + 5.33349I 18.0000 5.2915I
u = 1.00000
a = 1.00000
b = 0.978318 0.676097I
2.46740 5.33349I 18.0000 + 5.2915I
10
III. I
u
3
= hb 1, a + 1, u 1i
(i) Arc colorings
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
1
a
7
=
1
0
a
8
=
0
1
a
9
=
1
1
a
2
=
1
2
a
1
=
0
1
a
5
=
1
1
a
10
=
2
1
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
8
, c
11
c
12
u 1
c
2
, c
6
, c
7
c
9
, c
10
u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
6.57974 24.0000
14
IV. I
u
4
= hb + 1, a + 1, u 1i
(i) Arc colorings
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
1
a
7
=
1
0
a
8
=
2
1
a
9
=
1
1
a
2
=
1
0
a
1
=
0
1
a
5
=
1
1
a
10
=
0
1
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
8
, c
9
, c
11
c
12
u 1
c
2
, c
3
, c
4
c
6
, c
10
u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
6.57974 24.0000
18
V. I
u
5
= hb 1, a, u + 1i
(i) Arc colorings
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
0
1
a
7
=
1
0
a
8
=
1
1
a
9
=
0
1
a
2
=
0
1
a
1
=
0
1
a
5
=
0
1
a
10
=
1
1
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
u
c
3
, c
4
, c
6
c
7
, c
9
, c
11
c
12
u 1
c
8
, c
10
u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
c
3
, c
4
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
22
VI. I
u
6
= hb, a + 1, u + 1i
(i) Arc colorings
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
0
a
7
=
1
0
a
8
=
1
0
a
9
=
1
0
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
10
=
1
0
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
11
, c
12
u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
26
VII. I
u
7
= hb
4
+ 1, a + 1, u + 1i
(i) Arc colorings
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
b
a
7
=
1
0
a
8
=
b + 1
b
2
a
9
=
b
2
b + 1
b
2
a
2
=
1
b + 1
a
1
=
0
1
a
5
=
1
b
a
10
=
b
3
b
2
1
a
4
=
b
2
b 1
b
3
+ b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
(u 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ 1
c
5
, c
11
, c
12
(u + 1)
4
c
8
, c
10
(u
2
+ 1)
2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ 1)
2
c
8
, c
10
(y + 1)
4
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.707107 + 0.707107I
1.64493 16.0000
u = 1.00000
a = 1.00000
b = 0.707107 0.707107I
1.64493 16.0000
u = 1.00000
a = 1.00000
b = 0.707107 + 0.707107I
1.64493 16.0000
u = 1.00000
a = 1.00000
b = 0.707107 0.707107I
1.64493 16.0000
30
VIII. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
1
0
a
12
=
1
0
a
3
=
0
1
a
7
=
1
0
a
8
=
1
1
a
9
=
0
1
a
2
=
1
1
a
1
=
1
0
a
5
=
0
1
a
10
=
1
1
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
u + 1
c
2
, c
3
, c
4
c
5
, c
7
, c
9
u 1
c
6
, c
11
, c
12
u
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
, c
9
, c
10
y 1
c
6
, c
11
, c
12
y
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
4.93480 18.0000
34
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
11
(u + 1)(u
13
+ 37u
12
+ ··· + 21u + 1)
c
2
, c
6
u(u 1)
6
(u + 1)
6
(u
13
+ 3u
12
+ ··· 3u 1)
c
3
, c
7
u(u 1)
3
(u + 1)(u
4
+ 1)(u
4
u
2
+ 2)(u
13
5u
12
+ ··· + 36u + 26)
c
4
, c
9
u(u 1)
3
(u + 1)(u
4
+ 1)(u
4
u
2
+ 2)(u
13
+ 3u
12
+ ··· + 8u + 2)
c
5
, c
11
, c
12
u(u 1)
7
(u + 1)
5
(u
13
+ 3u
12
+ ··· 3u 1)
c
8
u(u 1)
2
(u + 1)
2
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
13
+ 5u
12
+ ··· + 32u + 4)
c
10
u(u + 1)
4
(u
2
+ 1)
2
(u
2
+ u + 2)
2
(u
13
+ 5u
12
+ ··· + 32u + 4)
35
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y 1)
12
(y
13
237y
12
+ ··· + 173y 1)
c
2
, c
5
, c
6
c
11
, c
12
y(y 1)
12
(y
13
37y
12
+ ··· + 21y 1)
c
3
, c
7
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
13
65y
12
+ ··· 5360y 676)
c
4
, c
9
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
13
5y
12
+ ··· + 32y 4)
c
8
, c
10
y(y 1)
4
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
13
+ 7y
12
+ ··· + 480y 16)
36