12n
0387
(K12n
0387
)
A knot diagram
1
Linearized knot diagam
3 6 10 8 2 12 3 11 4 9 6 7
Solving Sequence
4,9
10
6,11
12 3 2 1 5 8 7
c
9
c
10
c
11
c
3
c
2
c
1
c
5
c
8
c
7
c
4
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
14
+ 3u
13
7u
12
+ 6u
11
13u
10
+ 6u
9
12u
8
9u
6
10u
5
+ u
4
13u
3
+ u
2
+ b 7u 3,
3u
15
9u
14
+ ··· + 2a 8, u
16
3u
15
+ ··· + 2u + 2i
I
u
2
= hu
2
+ b + u + 1, u
3
+ 2a + u + 2, u
4
+ u
2
+ 2i
I
u
3
= h−u
3
+ au u
2
+ b + 1, u
3
a 2u
2
a + u
3
+ a
2
2au 2u
2
1, u
4
+ u
3
+ u
2
+ 1i
I
u
4
= h−u
3
u
2
+ b + 1, u
3
u
2
+ a u, u
4
+ 1i
I
u
5
= hb u, a 1, u
2
+ 1i
I
v
1
= ha, b + 1, v + 1i
* 6 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2u
14
+3u
13
+· · ·+b3, 3u
15
9u
14
+· · ·+2a8, u
16
3u
15
+· · ·+2u+2i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
3
2
u
15
+
9
2
u
14
+ ··· + 5u + 4
2u
14
3u
13
+ ··· + 7u + 3
a
11
=
u
2
+ 1
u
2
a
12
=
1
2
u
15
+
1
2
u
14
+ ··· +
3
2
u
3
+ 1
u
15
+ 2u
14
+ ··· + u + 1
a
3
=
u
u
3
+ u
a
2
=
1
2
u
15
+
1
2
u
14
+ ··· u
2
+ u
u
15
+ 2u
14
+ ··· + 2u + 1
a
1
=
3
2
u
15
+
3
2
u
14
+ ··· +
3
2
u
3
3u
2
4u
15
+ 9u
14
+ ··· + 7u + 5
a
5
=
u
9
2u
7
3u
5
2u
3
u
u
9
u
7
u
5
+ u
a
8
=
u
4
+ u
2
+ 1
u
4
a
7
=
u
8
u
6
u
4
+ 1
u
10
2u
8
3u
6
2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
15
8u
14
+ 12u
13
18u
12
+ 18u
11
28u
10
+ 12u
9
16u
8
2u
7
8u
6
30u
5
+ 10u
4
20u
3
4u
2
10u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 31u
15
+ ··· + 18u + 1
c
2
, c
5
, c
6
c
11
, c
12
u
16
+ u
15
+ ··· + 9u
2
1
c
3
, c
9
u
16
3u
15
+ ··· + 2u + 2
c
4
u
16
+ 15u
15
+ ··· + 1866u + 314
c
7
u
16
3u
15
+ ··· + 110u + 50
c
8
, c
10
u
16
5u
15
+ ··· + 20u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
119y
15
+ ··· 66y + 1
c
2
, c
5
, c
6
c
11
, c
12
y
16
31y
15
+ ··· 18y + 1
c
3
, c
9
y
16
+ 5y
15
+ ··· 20y + 4
c
4
y
16
7y
15
+ ··· 540404y + 98596
c
7
y
16
75y
15
+ ··· + 55500y + 2500
c
8
, c
10
y
16
+ 13y
15
+ ··· 1008y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.742751 + 0.731255I
a = 0.435126 + 1.127490I
b = 0.501292 + 1.155630I
3.21485 + 0.54630I 11.15141 2.56225I
u = 0.742751 0.731255I
a = 0.435126 1.127490I
b = 0.501292 1.155630I
3.21485 0.54630I 11.15141 + 2.56225I
u = 0.054006 + 0.927701I
a = 0.339113 0.403496I
b = 0.356009 + 0.336387I
2.06067 + 1.23650I 2.66728 5.86350I
u = 0.054006 0.927701I
a = 0.339113 + 0.403496I
b = 0.356009 0.336387I
2.06067 1.23650I 2.66728 + 5.86350I
u = 0.893186
a = 0.903219
b = 0.806743
18.7411 14.2280
u = 0.714194 + 0.883170I
a = 0.230746 + 0.032790I
b = 0.193757 + 0.180370I
1.49390 + 2.73623I 7.72446 2.31094I
u = 0.714194 0.883170I
a = 0.230746 0.032790I
b = 0.193757 0.180370I
1.49390 2.73623I 7.72446 + 2.31094I
u = 0.698495 + 0.969553I
a = 1.020710 0.642352I
b = 0.09016 1.43831I
2.49093 6.04455I 9.13130 + 8.50305I
u = 0.698495 0.969553I
a = 1.020710 + 0.642352I
b = 0.09016 + 1.43831I
2.49093 + 6.04455I 9.13130 8.50305I
u = 0.948967 + 0.727783I
a = 0.62477 2.29842I
b = 1.07987 2.63582I
16.2883 + 4.2323I 14.03484 0.40975I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.948967 0.727783I
a = 0.62477 + 2.29842I
b = 1.07987 + 2.63582I
16.2883 4.2323I 14.03484 + 0.40975I
u = 0.294487 + 1.168400I
a = 0.864463 + 0.293623I
b = 0.088495 1.096510I
14.6982 + 4.0602I 9.52226 2.84200I
u = 0.294487 1.168400I
a = 0.864463 0.293623I
b = 0.088495 + 1.096510I
14.6982 4.0602I 9.52226 + 2.84200I
u = 0.796357 + 1.060920I
a = 2.12200 + 0.97725I
b = 0.65309 + 3.02951I
17.3459 10.6503I 12.77445 + 4.89153I
u = 0.796357 1.060920I
a = 2.12200 0.97725I
b = 0.65309 3.02951I
17.3459 + 10.6503I 12.77445 4.89153I
u = 0.354580
a = 0.669122
b = 0.237257
0.628198 15.7600
6
II. I
u
2
= hu
2
+ b + u + 1, u
3
+ 2a + u + 2, u
4
+ u
2
+ 2i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
1
2
u
3
1
2
u 1
u
2
u 1
a
11
=
u
2
+ 1
u
2
a
12
=
1
2
u
3
+ u
2
1
2
u
u 1
a
3
=
u
u
3
+ u
a
2
=
1
2
u
3
+
1
2
u 1
u
3
u
2
1
a
1
=
1
2
u
3
1
2
u 1
u
2
u 1
a
5
=
u
u
3
u
a
8
=
1
u
2
2
a
7
=
u
2
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
4
c
2
, c
6
(u + 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ u
2
+ 2
c
8
(u
2
+ u + 2)
2
c
10
(u
2
u + 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ y + 2)
2
c
8
, c
10
(y
2
+ 3y + 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.676097 + 0.978318I
a = 2.15417 0.28654I
b = 1.17610 2.30119I
4.11234 5.33349I 14.0000 + 5.2915I
u = 0.676097 0.978318I
a = 2.15417 + 0.28654I
b = 1.17610 + 2.30119I
4.11234 + 5.33349I 14.0000 5.2915I
u = 0.676097 + 0.978318I
a = 0.154169 0.286543I
b = 0.176097 + 0.344557I
4.11234 + 5.33349I 14.0000 5.2915I
u = 0.676097 0.978318I
a = 0.154169 + 0.286543I
b = 0.176097 0.344557I
4.11234 5.33349I 14.0000 + 5.2915I
10
III.
I
u
3
= h−u
3
+auu
2
+b+1, u
3
a2u
2
a+u
3
+a
2
2au2u
2
1, u
4
+u
3
+u
2
+1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
a
u
3
au + u
2
1
a
11
=
u
2
+ 1
u
2
a
12
=
u
2
a u
3
+ au u
2
+ a + u + 1
u
2
a + au u
2
+ u + 1
a
3
=
u
u
3
+ u
a
2
=
u
3
au + 2u
2
a
u
3
a u
2
a au + u
2
u 1
a
1
=
u
2
a + u
3
au + 3u
2
a u + 1
2u
3
a u
2
a 2u
3
au + 2u
2
a 2u 1
a
5
=
2u
3
+ 1
2u
3
+ 2u
2
+ 2
a
8
=
u
3
u
3
u
2
1
a
7
=
2u
3
2u
3
2u
2
+ u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u 10
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 13u
7
+ ··· + 889u + 256
c
2
, c
5
, c
6
c
11
, c
12
u
8
+ u
7
6u
6
4u
5
+ 21u
4
+ 11u
3
27u
2
5u + 16
c
3
, c
9
(u
4
+ u
3
+ u
2
+ 1)
2
c
4
(u
4
5u
3
+ 7u
2
2u + 1)
2
c
7
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
8
, c
10
(u
4
u
3
+ 3u
2
2u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 3y
7
+ ··· 16689y + 65536
c
2
, c
5
, c
6
c
11
, c
12
y
8
13y
7
+ ··· 889y + 256
c
3
, c
9
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
4
(y
4
11y
3
+ 31y
2
+ 10y + 1)
2
c
7
, c
8
, c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 0.560363 + 0.369379I
b = 1.43601 + 0.67423I
3.07886 1.41510I 10.17326 + 4.90874I
u = 0.351808 + 0.720342I
a = 0.03038 + 1.97868I
b = 0.463219 0.273703I
3.07886 1.41510I 10.17326 + 4.90874I
u = 0.351808 0.720342I
a = 0.560363 0.369379I
b = 1.43601 0.67423I
3.07886 + 1.41510I 10.17326 4.90874I
u = 0.351808 0.720342I
a = 0.03038 1.97868I
b = 0.463219 + 0.273703I
3.07886 + 1.41510I 10.17326 4.90874I
u = 0.851808 + 0.911292I
a = 1.15548 1.61606I
b = 0.08923 2.75519I
10.08060 + 3.16396I 13.82674 2.56480I
u = 0.851808 + 0.911292I
a = 1.56474 + 1.56051I
b = 0.48846 + 2.42955I
10.08060 + 3.16396I 13.82674 2.56480I
u = 0.851808 0.911292I
a = 1.15548 + 1.61606I
b = 0.08923 + 2.75519I
10.08060 3.16396I 13.82674 + 2.56480I
u = 0.851808 0.911292I
a = 1.56474 1.56051I
b = 0.48846 2.42955I
10.08060 3.16396I 13.82674 + 2.56480I
14
IV. I
u
4
= h−u
3
u
2
+ b + 1, u
3
u
2
+ a u, u
4
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
3
+ u
2
+ u
u
3
+ u
2
1
a
11
=
u
2
+ 1
u
2
a
12
=
u
3
u + 1
u
3
+ 1
a
3
=
u
u
3
+ u
a
2
=
u
3
u
2
u
2
+ u + 1
a
1
=
u
3
u
2
u
u
3
u
2
+ 1
a
5
=
u
u
3
+ u
a
8
=
u
2
1
a
7
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
(u 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ 1
c
5
, c
11
, c
12
(u + 1)
4
c
8
, c
10
(u
2
+ 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ 1)
2
c
8
, c
10
(y + 1)
4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 2.41421I
b = 1.70711 + 1.70711I
4.93480 16.0000
u = 0.707107 0.707107I
a = 2.41421I
b = 1.70711 1.70711I
4.93480 16.0000
u = 0.707107 + 0.707107I
a = 0.414214I
b = 0.292893 0.292893I
4.93480 16.0000
u = 0.707107 0.707107I
a = 0.414214I
b = 0.292893 + 0.292893I
4.93480 16.0000
18
V. I
u
5
= hb u, a 1, u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
1
a
6
=
1
u
a
11
=
0
1
a
12
=
1
u 1
a
3
=
u
0
a
2
=
u + 1
u
a
1
=
1
u
a
5
=
u
0
a
8
=
1
1
a
7
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
10
c
11
, c
12
(u 1)
2
c
2
, c
6
, c
8
(u + 1)
2
c
3
, c
4
, c
7
c
9
u
2
+ 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
8
, c
10
c
11
, c
12
(y 1)
2
c
3
, c
4
, c
7
c
9
(y + 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 1.000000I
0 8.00000
u = 1.000000I
a = 1.00000
b = 1.000000I
0 8.00000
22
VI. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
10
=
1
0
a
6
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
0
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
8
=
1
0
a
7
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
11
, c
12
u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
26
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
11
)(u
8
+ 13u
7
+ ··· + 889u + 256)(u
16
+ 31u
15
+ ··· + 18u + 1)
c
2
, c
6
((u 1)
5
)(u + 1)
6
(u
8
+ u
7
+ ··· 5u + 16)
· (u
16
+ u
15
+ ··· + 9u
2
1)
c
3
, c
9
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
4
+ u
3
+ u
2
+ 1)
2
(u
16
3u
15
+ ··· + 2u + 2)
c
4
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
4
5u
3
+ 7u
2
2u + 1)
2
· (u
16
+ 15u
15
+ ··· + 1866u + 314)
c
5
, c
11
, c
12
((u 1)
6
)(u + 1)
5
(u
8
+ u
7
+ ··· 5u + 16)
· (u
16
+ u
15
+ ··· + 9u
2
1)
c
7
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
· (u
16
3u
15
+ ··· + 110u + 50)
c
8
u(u + 1)
2
(u
2
+ 1)
2
(u
2
+ u + 2)
2
(u
4
u
3
+ 3u
2
2u + 1)
2
· (u
16
5u
15
+ ··· + 20u + 4)
c
10
u(u 1)
2
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
4
u
3
+ 3u
2
2u + 1)
2
· (u
16
5u
15
+ ··· + 20u + 4)
27
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
11
)(y
8
+ 3y
7
+ ··· 16689y + 65536)
· (y
16
119y
15
+ ··· 66y + 1)
c
2
, c
5
, c
6
c
11
, c
12
((y 1)
11
)(y
8
13y
7
+ ··· 889y + 256)(y
16
31y
15
+ ··· 18y + 1)
c
3
, c
9
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
· (y
16
+ 5y
15
+ ··· 20y + 4)
c
4
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
(y
4
11y
3
+ 31y
2
+ 10y + 1)
2
· (y
16
7y
15
+ ··· 540404y + 98596)
c
7
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· (y
16
75y
15
+ ··· + 55500y + 2500)
c
8
, c
10
y(y 1)
2
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
· (y
16
+ 13y
15
+ ··· 1008y + 16)
28