12n
0389
(K12n
0389
)
A knot diagram
1
Linearized knot diagam
3 6 7 9 2 12 5 10 4 8 6 7
Solving Sequence
4,9 2,5
6 10 8 11 12 7 3 1
c
4
c
5
c
9
c
8
c
10
c
11
c
7
c
3
c
1
c
2
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
27
2u
26
+ ··· + b 1, u
27
+ u
26
+ ··· + 2a 2, u
28
+ 3u
27
+ ··· + 2u + 2i
I
u
2
= h−u
15
a + u
15
+ ··· a + 3, 2u
15
a + 2u
15
+ ··· 2a + 2,
u
16
u
15
+ 3u
14
2u
13
+ 7u
12
4u
11
+ 10u
10
4u
9
+ 11u
8
2u
7
+ 8u
6
+ 4u
4
+ 2u
3
+ 2u 1i
I
u
3
= h−u
2
+ b u + 1, u
3
+ 2u
2
+ 2a u + 4, u
4
+ u
2
+ 2i
I
u
4
= hb + u + 2, a + u + 3, u
2
+ 1i
I
u
5
= hu
3
+ u
2
+ b + 1, a u 1, u
4
+ 1i
I
v
1
= ha, b + 1, v + 1i
* 6 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
27
2u
26
+· · ·+b1, u
27
+u
26
+· · ·+2a2, u
28
+3u
27
+· · ·+2u+2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
1
2
u
27
1
2
u
26
+ ··· u + 1
u
27
+ 2u
26
+ ··· + u + 1
a
5
=
1
u
2
a
6
=
1
2
u
27
+
1
2
u
26
+ ··· +
7
2
u
3
u
2
u
26
u
25
+ ··· + u 1
a
10
=
u
u
a
8
=
u
3
u
3
+ u
a
11
=
u
5
+ u
u
5
+ u
3
+ u
a
12
=
1
2
u
27
1
2
u
26
+ ···
7
2
u
3
+ u
2
u
27
+ 2u
26
+ ··· + 2u + 1
a
7
=
u
5
u
u
7
+ u
5
+ 2u
3
+ u
a
3
=
u
12
u
10
3u
8
2u
6
2u
4
u
2
+ 1
u
14
+ 2u
12
+ 5u
10
+ 6u
8
+ 6u
6
+ 4u
4
+ u
2
a
1
=
5
2
u
27
+
7
2
u
26
+ ··· u
2
+ 3u
3u
27
6u
26
+ ··· 5u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
27
+ 18u
26
+ 54u
25
+ 80u
24
+ 176u
23
+ 218u
22
+ 384u
21
+
390u
20
+ 606u
19
+ 500u
18
+ 704u
17
+ 440u
16
+ 614u
15
+ 222u
14
+ 372u
13
16u
12
+
148u
11
146u
10
+ 30u
9
136u
8
10u
7
92u
6
6u
5
34u
4
+ 8u
3
+ 8u
2
+ 22u + 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
+ 7u
27
+ ··· + 8u + 1
c
2
, c
5
, c
6
c
11
, c
12
u
28
+ u
27
+ ··· + 2u + 1
c
3
u
28
3u
27
+ ··· 238u + 50
c
4
, c
9
u
28
3u
27
+ ··· 2u + 2
c
7
u
28
+ 15u
27
+ ··· + 1134u + 158
c
8
, c
10
u
28
+ 9u
27
+ ··· + 20u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
+ 41y
27
+ ··· + 36y + 1
c
2
, c
5
, c
6
c
11
, c
12
y
28
7y
27
+ ··· 8y + 1
c
3
y
28
15y
27
+ ··· + 253556y + 2500
c
4
, c
9
y
28
+ 9y
27
+ ··· + 20y + 4
c
7
y
28
3y
27
+ ··· + 228948y + 24964
c
8
, c
10
y
28
+ 21y
27
+ ··· + 112y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.357080 + 0.990708I
a = 1.17579 + 1.29712I
b = 0.966655 0.502162I
1.10269 2.91896I 6.58916 + 1.35621I
u = 0.357080 0.990708I
a = 1.17579 1.29712I
b = 0.966655 + 0.502162I
1.10269 + 2.91896I 6.58916 1.35621I
u = 0.009749 + 1.057290I
a = 2.21816 0.73889I
b = 1.78141 0.42208I
5.12130 1.42409I 9.75378 + 4.84787I
u = 0.009749 1.057290I
a = 2.21816 + 0.73889I
b = 1.78141 + 0.42208I
5.12130 + 1.42409I 9.75378 4.84787I
u = 0.675265 + 0.641850I
a = 0.942832 + 0.025360I
b = 0.656487 + 0.567996I
0.029347 0.742942I 2.66483 + 4.11260I
u = 0.675265 0.641850I
a = 0.942832 0.025360I
b = 0.656487 0.567996I
0.029347 + 0.742942I 2.66483 4.11260I
u = 0.201680 + 1.066800I
a = 2.93136 + 0.13549I
b = 2.18433 0.34282I
0.10693 + 9.35469I 8.40093 7.64801I
u = 0.201680 1.066800I
a = 2.93136 0.13549I
b = 2.18433 + 0.34282I
0.10693 9.35469I 8.40093 + 7.64801I
u = 0.851089 + 0.709851I
a = 0.654367 0.630430I
b = 2.05001 1.47929I
7.15859 + 9.12533I 2.05138 4.56575I
u = 0.851089 0.709851I
a = 0.654367 + 0.630430I
b = 2.05001 + 1.47929I
7.15859 9.12533I 2.05138 + 4.56575I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.672429 + 0.567673I
a = 0.911611 + 0.160034I
b = 0.71715 1.22852I
0.04567 2.37011I 3.07191 + 4.49176I
u = 0.672429 0.567673I
a = 0.911611 0.160034I
b = 0.71715 + 1.22852I
0.04567 + 2.37011I 3.07191 4.49176I
u = 0.840063 + 0.786573I
a = 0.492673 + 0.823459I
b = 0.087379 + 0.226571I
8.56887 4.65353I 0.39876 + 4.46500I
u = 0.840063 0.786573I
a = 0.492673 0.823459I
b = 0.087379 0.226571I
8.56887 + 4.65353I 0.39876 4.46500I
u = 0.758184 + 0.875112I
a = 0.635547 + 0.434170I
b = 0.649386 + 0.105970I
4.62333 + 2.86656I 2.11844 3.14500I
u = 0.758184 0.875112I
a = 0.635547 0.434170I
b = 0.649386 0.105970I
4.62333 2.86656I 2.11844 + 3.14500I
u = 0.638350 + 1.005070I
a = 2.04567 0.58767I
b = 1.19550 + 1.80863I
1.27376 + 7.45615I 5.74748 10.04223I
u = 0.638350 1.005070I
a = 2.04567 + 0.58767I
b = 1.19550 1.80863I
1.27376 7.45615I 5.74748 + 10.04223I
u = 0.660931 + 0.998814I
a = 1.00547 + 1.02454I
b = 1.24984 0.99805I
1.01565 4.47891I 4.23563 + 0.76999I
u = 0.660931 0.998814I
a = 1.00547 1.02454I
b = 1.24984 + 0.99805I
1.01565 + 4.47891I 4.23563 0.76999I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.776659 + 0.972247I
a = 0.490506 0.576756I
b = 0.217973 + 0.023439I
7.99447 1.37799I 1.229837 + 0.612967I
u = 0.776659 0.972247I
a = 0.490506 + 0.576756I
b = 0.217973 0.023439I
7.99447 + 1.37799I 1.229837 0.612967I
u = 0.747656 + 1.019100I
a = 2.07210 1.69147I
b = 2.41123 + 1.53544I
6.2073 15.0893I 3.71765 + 9.34150I
u = 0.747656 1.019100I
a = 2.07210 + 1.69147I
b = 2.41123 1.53544I
6.2073 + 15.0893I 3.71765 9.34150I
u = 0.697614 + 0.095875I
a = 0.669180 0.749710I
b = 1.260170 0.377922I
3.91681 + 6.47583I 1.45394 5.09717I
u = 0.697614 0.095875I
a = 0.669180 + 0.749710I
b = 1.260170 + 0.377922I
3.91681 6.47583I 1.45394 + 5.09717I
u = 0.283422 + 0.542166I
a = 0.906792 0.049620I
b = 0.116042 0.108742I
0.175714 1.037120I 2.80315 + 6.64420I
u = 0.283422 0.542166I
a = 0.906792 + 0.049620I
b = 0.116042 + 0.108742I
0.175714 + 1.037120I 2.80315 6.64420I
7
II. I
u
2
=
h−u
15
a+u
15
+· · ·a+3, 2u
15
a+2u
15
+· · ·2a+2, u
16
u
15
+· · ·+2u1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
a
1
2
u
15
a
1
2
u
15
+ ··· +
1
2
a
3
2
a
5
=
1
u
2
a
6
=
1
2
u
15
a
1
2
u
15
+ ··· +
3
2
a
3
2
u
12
+ 2u
10
+ ··· + 2u + 1
a
10
=
u
u
a
8
=
u
3
u
3
+ u
a
11
=
u
5
+ u
u
5
+ u
3
+ u
a
12
=
1
2
u
15
a +
1
2
u
15
+ ···
3
2
a +
3
2
1
2
u
15
a +
1
2
u
15
+ ···
1
2
a +
3
2
a
7
=
u
5
u
u
7
+ u
5
+ 2u
3
+ u
a
3
=
u
12
u
10
3u
8
2u
6
2u
4
u
2
+ 1
u
14
+ 2u
12
+ 5u
10
+ 6u
8
+ 6u
6
+ 4u
4
+ u
2
a
1
=
1
2
u
15
a
1
2
u
15
+ ··· +
3
2
a
1
2
u
15
a u
15
+ ··· + a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
15
+8u
13
+4u
12
+20u
11
+8u
10
+24u
9
+16u
8
+28u
7
+20u
6
+20u
5
+16u
4
+12u
3
+12u
2
2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
32
+ 13u
31
+ ··· + 2505u + 256
c
2
, c
5
, c
6
c
11
, c
12
u
32
+ u
31
+ ··· 13u 16
c
3
(u
16
+ u
15
+ ··· + 2u
2
1)
2
c
4
, c
9
(u
16
+ u
15
+ ··· 2u 1)
2
c
7
(u
16
5u
15
+ ··· + 8u 7)
2
c
8
, c
10
(u
16
+ 5u
15
+ ··· 4u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
32
+ 11y
31
+ ··· + 1013295y + 65536
c
2
, c
5
, c
6
c
11
, c
12
y
32
13y
31
+ ··· 2505y + 256
c
3
(y
16
19y
15
+ ··· 4y + 1)
2
c
4
, c
9
(y
16
+ 5y
15
+ ··· 4y + 1)
2
c
7
(y
16
7y
15
+ ··· 344y + 49)
2
c
8
, c
10
(y
16
+ 13y
15
+ ··· 48y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.254861 + 1.023380I
a = 0.50162 1.49362I
b = 0.607139 0.301866I
1.40970 3.12434I 6.05940 + 3.66013I
u = 0.254861 + 1.023380I
a = 2.28656 + 0.08597I
b = 1.340560 + 0.447711I
1.40970 3.12434I 6.05940 + 3.66013I
u = 0.254861 1.023380I
a = 0.50162 + 1.49362I
b = 0.607139 + 0.301866I
1.40970 + 3.12434I 6.05940 3.66013I
u = 0.254861 1.023380I
a = 2.28656 0.08597I
b = 1.340560 0.447711I
1.40970 + 3.12434I 6.05940 3.66013I
u = 0.750689 + 0.759364I
a = 0.956948 0.036904I
b = 1.17813 + 1.16703I
0.311107 + 0.489680I 1.64393 1.43137I
u = 0.750689 + 0.759364I
a = 0.919406 0.682819I
b = 1.233040 + 0.594121I
0.311107 + 0.489680I 1.64393 1.43137I
u = 0.750689 0.759364I
a = 0.956948 + 0.036904I
b = 1.17813 1.16703I
0.311107 0.489680I 1.64393 + 1.43137I
u = 0.750689 0.759364I
a = 0.919406 + 0.682819I
b = 1.233040 0.594121I
0.311107 0.489680I 1.64393 + 1.43137I
u = 0.099165 + 0.920214I
a = 0.97209 + 1.30975I
b = 0.277510 + 1.275700I
5.17692 + 1.52971I 10.72737 5.08772I
u = 0.099165 + 0.920214I
a = 3.76471 0.60851I
b = 2.03422 + 0.24629I
5.17692 + 1.52971I 10.72737 5.08772I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.099165 0.920214I
a = 0.97209 1.30975I
b = 0.277510 1.275700I
5.17692 1.52971I 10.72737 + 5.08772I
u = 0.099165 0.920214I
a = 3.76471 + 0.60851I
b = 2.03422 0.24629I
5.17692 1.52971I 10.72737 + 5.08772I
u = 0.665350 + 0.873267I
a = 1.003110 0.569330I
b = 1.41970 1.66184I
2.27257 + 2.57669I 7.30756 2.71681I
u = 0.665350 + 0.873267I
a = 1.91799 2.15716I
b = 1.96956 + 1.27998I
2.27257 + 2.57669I 7.30756 2.71681I
u = 0.665350 0.873267I
a = 1.003110 + 0.569330I
b = 1.41970 + 1.66184I
2.27257 2.57669I 7.30756 + 2.71681I
u = 0.665350 0.873267I
a = 1.91799 + 2.15716I
b = 1.96956 1.27998I
2.27257 2.57669I 7.30756 + 2.71681I
u = 0.847960 + 0.745397I
a = 0.230594 + 0.489998I
b = 1.59945 + 1.15994I
8.61070 2.28357I 0.075280 + 0.308256I
u = 0.847960 + 0.745397I
a = 0.198841 0.492541I
b = 0.097691 0.720809I
8.61070 2.28357I 0.075280 + 0.308256I
u = 0.847960 0.745397I
a = 0.230594 0.489998I
b = 1.59945 1.15994I
8.61070 + 2.28357I 0.075280 0.308256I
u = 0.847960 0.745397I
a = 0.198841 + 0.492541I
b = 0.097691 + 0.720809I
8.61070 + 2.28357I 0.075280 0.308256I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.716556 + 0.957138I
a = 0.113653 1.335050I
b = 1.35141 0.89567I
0.28749 6.07197I 3.38425 + 7.02814I
u = 0.716556 + 0.957138I
a = 1.51453 + 1.63636I
b = 1.57634 1.36115I
0.28749 6.07197I 3.38425 + 7.02814I
u = 0.716556 0.957138I
a = 0.113653 + 1.335050I
b = 1.35141 + 0.89567I
0.28749 + 6.07197I 3.38425 7.02814I
u = 0.716556 0.957138I
a = 1.51453 1.63636I
b = 1.57634 + 1.36115I
0.28749 + 6.07197I 3.38425 7.02814I
u = 0.761782 + 1.000110I
a = 0.879278 + 0.655399I
b = 0.021538 + 0.554655I
7.82454 + 8.28859I 1.42292 5.27135I
u = 0.761782 + 1.000110I
a = 1.69603 + 1.36600I
b = 1.82121 1.08166I
7.82454 + 8.28859I 1.42292 5.27135I
u = 0.761782 1.000110I
a = 0.879278 0.655399I
b = 0.021538 0.554655I
7.82454 8.28859I 1.42292 + 5.27135I
u = 0.761782 1.000110I
a = 1.69603 1.36600I
b = 1.82121 + 1.08166I
7.82454 8.28859I 1.42292 + 5.27135I
u = 0.689113
a = 0.213554 + 0.496575I
b = 0.887810 + 0.688994I
4.71670 0.147800
u = 0.689113
a = 0.213554 0.496575I
b = 0.887810 0.688994I
4.71670 0.147800
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.384812
a = 1.07569
b = 1.31135
2.52578 1.09360
u = 0.384812
a = 2.46446
b = 0.278658
2.52578 1.09360
14
III. I
u
3
= h−u
2
+ b u + 1, u
3
+ 2u
2
+ 2a u + 4, u
4
+ u
2
+ 2i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
1
2
u
3
u
2
+
1
2
u 2
u
2
+ u 1
a
5
=
1
u
2
a
6
=
1
2
u
3
u
2
+
1
2
u 1
u 1
a
10
=
u
u
a
8
=
u
3
u
3
+ u
a
11
=
u
3
u
u
a
12
=
1
2
u
3
u
2
1
2
u 1
1
a
7
=
u
3
+ u
u
a
3
=
1
u
2
a
1
=
1
2
u
3
u
2
+
1
2
u 1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
c
12
(u 1)
4
c
2
, c
6
(u + 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ u
2
+ 2
c
8
(u
2
u + 2)
2
c
10
(u
2
+ u + 2)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ y + 2)
2
c
8
, c
10
(y
2
+ 3y + 4)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.676097 + 0.978318I
a = 1.97807 0.63110I
b = 0.82390 + 2.30119I
2.46740 + 5.33349I 10.00000 5.29150I
u = 0.676097 0.978318I
a = 1.97807 + 0.63110I
b = 0.82390 2.30119I
2.46740 5.33349I 10.00000 + 5.29150I
u = 0.676097 + 0.978318I
a = 1.02193 + 2.01465I
b = 2.17610 0.34456I
2.46740 5.33349I 10.00000 + 5.29150I
u = 0.676097 0.978318I
a = 1.02193 2.01465I
b = 2.17610 + 0.34456I
2.46740 + 5.33349I 10.00000 5.29150I
18
IV. I
u
4
= hb + u + 2, a + u + 3, u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
u 3
u 2
a
5
=
1
1
a
6
=
u 2
u 1
a
10
=
u
u
a
8
=
u
0
a
11
=
2u
u
a
12
=
u 2
1
a
7
=
2u
u
a
3
=
1
1
a
1
=
u 2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
8
c
11
, c
12
(u 1)
2
c
2
, c
6
, c
10
(u + 1)
2
c
3
, c
4
, c
7
c
9
u
2
+ 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
8
, c
10
c
11
, c
12
(y 1)
2
c
3
, c
4
, c
7
c
9
(y + 1)
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 3.00000 1.00000I
b = 2.00000 1.00000I
6.57974 16.0000
u = 1.000000I
a = 3.00000 + 1.00000I
b = 2.00000 + 1.00000I
6.57974 16.0000
22
V. I
u
5
= hu
3
+ u
2
+ b + 1, a u 1, u
4
+ 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
u + 1
u
3
u
2
1
a
5
=
1
u
2
a
6
=
u
u
3
+ 1
a
10
=
u
u
a
8
=
u
3
u
3
+ u
a
11
=
0
u
3
a
12
=
u
1
a
7
=
0
u
3
a
3
=
1
u
2
a
1
=
u
u
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
(u 1)
4
c
3
, c
4
, c
7
c
9
u
4
+ 1
c
5
, c
11
, c
12
(u + 1)
4
c
8
, c
10
(u
2
+ 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
7
c
9
(y
2
+ 1)
2
c
8
, c
10
(y + 1)
4
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 1.70711 + 0.70711I
b = 0.29289 1.70711I
1.64493 8.00000
u = 0.707107 0.707107I
a = 1.70711 0.70711I
b = 0.29289 + 1.70711I
1.64493 8.00000
u = 0.707107 + 0.707107I
a = 0.292893 + 0.707107I
b = 1.70711 + 0.29289I
1.64493 8.00000
u = 0.707107 0.707107I
a = 0.292893 0.707107I
b = 1.70711 0.29289I
1.64493 8.00000
26
VI. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
2
=
0
1
a
5
=
1
0
a
6
=
1
1
a
10
=
1
0
a
8
=
1
0
a
11
=
1
0
a
12
=
2
1
a
7
=
1
0
a
3
=
1
0
a
1
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
u
c
5
, c
11
, c
12
u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
11
, c
12
y 1
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
30
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
11
)(u
28
+ 7u
27
+ ··· + 8u + 1)(u
32
+ 13u
31
+ ··· + 2505u + 256)
c
2
, c
6
((u 1)
5
)(u + 1)
6
(u
28
+ u
27
+ ··· + 2u + 1)(u
32
+ u
31
+ ··· 13u 16)
c
3
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
16
+ u
15
+ ··· + 2u
2
1)
2
· (u
28
3u
27
+ ··· 238u + 50)
c
4
, c
9
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
16
+ u
15
+ ··· 2u 1)
2
· (u
28
3u
27
+ ··· 2u + 2)
c
5
, c
11
, c
12
((u 1)
6
)(u + 1)
5
(u
28
+ u
27
+ ··· + 2u + 1)(u
32
+ u
31
+ ··· 13u 16)
c
7
u(u
2
+ 1)(u
4
+ 1)(u
4
+ u
2
+ 2)(u
16
5u
15
+ ··· + 8u 7)
2
· (u
28
+ 15u
27
+ ··· + 1134u + 158)
c
8
u(u 1)
2
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
16
+ 5u
15
+ ··· 4u + 1)
2
· (u
28
+ 9u
27
+ ··· + 20u + 4)
c
10
u(u + 1)
2
(u
2
+ 1)
2
(u
2
+ u + 2)
2
(u
16
+ 5u
15
+ ··· 4u + 1)
2
· (u
28
+ 9u
27
+ ··· + 20u + 4)
31
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
11
)(y
28
+ 41y
27
+ ··· + 36y + 1)
· (y
32
+ 11y
31
+ ··· + 1013295y + 65536)
c
2
, c
5
, c
6
c
11
, c
12
((y 1)
11
)(y
28
7y
27
+ ··· 8y + 1)(y
32
13y
31
+ ··· 2505y + 256)
c
3
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
(y
16
19y
15
+ ··· 4y + 1)
2
· (y
28
15y
27
+ ··· + 253556y + 2500)
c
4
, c
9
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
(y
16
+ 5y
15
+ ··· 4y + 1)
2
· (y
28
+ 9y
27
+ ··· + 20y + 4)
c
7
y(y + 1)
2
(y
2
+ 1)
2
(y
2
+ y + 2)
2
(y
16
7y
15
+ ··· 344y + 49)
2
· (y
28
3y
27
+ ··· + 228948y + 24964)
c
8
, c
10
y(y 1)
2
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
16
+ 13y
15
+ ··· 48y + 1)
2
· (y
28
+ 21y
27
+ ··· + 112y + 16)
32