12n
0395
(K12n
0395
)
A knot diagram
1
Linearized knot diagam
3 5 11 9 2 12 3 1 12 4 7 4
Solving Sequence
4,12 1,7
6 11 3 2 5 10 9 8
c
12
c
6
c
11
c
3
c
1
c
5
c
10
c
9
c
8
c
2
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−377702541u
18
368786459u
17
+ ··· + 156030809b + 1065050773,
509610922u
18
+ 379813420u
17
+ ··· + 156030809a 1049301116, u
19
+ u
18
+ ··· 3u 1i
I
u
2
= h1.29506 × 10
87
u
39
+ 1.53497 × 10
87
u
38
+ ··· + 2.69800 × 10
88
b 3.45877 × 10
88
,
5.34951 × 10
86
u
39
+ 5.15111 × 10
86
u
38
+ ··· + 2.69800 × 10
88
a + 9.82066 × 10
88
, u
40
+ u
39
+ ··· 15u + 1i
I
u
3
= h−u
10
+ 29u
9
+ 25u
8
45u
7
+ 31u
6
+ 58u
5
50u
4
+ 86u
3
+ 101u
2
+ 47b 20u 11,
31u
10
+ 41u
9
23u
8
15u
7
+ 26u
6
+ 35u
5
+ 93u
4
+ 60u
3
+ 65u
2
+ 47a 38u 129,
u
11
+ u
10
2u
9
+ 3u
7
u
6
+ 2u
5
+ 4u
4
2u
3
2u
2
+ 1i
I
u
4
= h−2u
9
+ u
8
+ 8u
7
+ 2u
6
15u
5
7u
4
+ 10u
3
+ 6u
2
+ b 6u 3,
u
9
u
8
+ 6u
7
+ 5u
6
10u
5
11u
4
+ 8u
3
+ 8u
2
+ a 5u 6,
u
10
4u
8
3u
7
+ 6u
6
+ 7u
5
2u
4
5u
3
+ u
2
+ 3u + 1i
* 4 irreducible components of dim
C
= 0, with total 80 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.78 × 10
8
u
18
3.69 × 10
8
u
17
+ · · · + 1.56 × 10
8
b + 1.07 × 10
9
, 5.10 ×
10
8
u
18
+ 3.80 × 10
8
u
17
+ · · · + 1.56 × 10
8
a 1.05 × 10
9
, u
19
+ u
18
+ · · · 3u 1i
(i) Arc colorings
a
4
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
7
=
3.26609u
18
2.43422u
17
+ ··· + 14.6633u + 6.72496
2.42069u
18
+ 2.36355u
17
+ ··· 9.38422u 6.82590
a
6
=
5.68678u
18
4.79777u
17
+ ··· + 24.0475u + 13.5509
2.42069u
18
+ 2.36355u
17
+ ··· 9.38422u 6.82590
a
11
=
8.21607u
18
+ 4.60275u
17
+ ··· 30.9090u 8.69525
0.467933u
18
1.05048u
17
+ ··· + 3.62390u + 3.61332
a
3
=
2.94393u
18
+ 3.81230u
17
+ ··· 11.6400u 13.6846
0.852487u
18
0.589367u
17
+ ··· 1.92514u + 2.74496
a
2
=
4.03573u
18
+ 2.94704u
17
+ ··· 19.3471u 5.85388
1.97347u
18
0.834541u
17
+ ··· + 6.74227u + 1.47324
a
5
=
3.87980u
18
5.91327u
17
+ ··· + 16.8878u + 20.9112
0.467933u
18
+ 1.05048u
17
+ ··· 1.62390u 3.61332
a
10
=
8.21607u
18
+ 4.60275u
17
+ ··· 30.9090u 8.69525
u
a
9
=
8.21607u
18
+ 4.60275u
17
+ ··· 31.9090u 8.69525
u
a
8
=
8.68401u
18
+ 5.65323u
17
+ ··· 33.5329u 12.3086
0.580147u
18
+ 0.361879u
17
+ ··· 1.21559u 0.582551
(ii) Obstruction class = 1
(iii) Cusp Shapes =
858705183
156030809
u
18
1012526591
156030809
u
17
+ ··· +
5471923598
156030809
u +
4145235745
156030809
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 7u
18
+ ··· 4u 1
c
2
, c
5
, c
6
c
11
u
19
+ u
18
+ ··· + 2u 1
c
3
, c
10
u
19
11u
18
+ ··· + 60u 8
c
4
u
19
+ 12u
18
+ ··· 176u 32
c
7
u
19
u
18
+ ··· + 1133u 517
c
8
u
19
+ 11u
17
+ ··· 7u 13
c
9
, c
12
u
19
+ u
18
+ ··· 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 23y
18
+ ··· + 28y 1
c
2
, c
5
, c
6
c
11
y
19
+ 7y
18
+ ··· 4y 1
c
3
, c
10
y
19
+ 3y
18
+ ··· 368y 64
c
4
y
19
+ 8y
18
+ ··· + 6912y 1024
c
7
y
19
7y
18
+ ··· + 566093y 267289
c
8
y
19
+ 22y
18
+ ··· 2291y 169
c
9
, c
12
y
19
23y
18
+ ··· + 9y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.043320 + 0.605021I
a = 0.095431 1.196260I
b = 0.072994 1.051030I
3.46673 2.11998I 0.23396 + 2.61296I
u = 1.043320 0.605021I
a = 0.095431 + 1.196260I
b = 0.072994 + 1.051030I
3.46673 + 2.11998I 0.23396 2.61296I
u = 1.279840 + 0.395378I
a = 0.190387 0.406271I
b = 0.221252 0.463223I
1.07628 + 1.45118I 13.08253 + 0.58489I
u = 1.279840 0.395378I
a = 0.190387 + 0.406271I
b = 0.221252 + 0.463223I
1.07628 1.45118I 13.08253 0.58489I
u = 0.091308 + 0.542033I
a = 0.05772 3.40851I
b = 0.321625 0.991324I
6.77802 + 4.24933I 2.37252 3.20470I
u = 0.091308 0.542033I
a = 0.05772 + 3.40851I
b = 0.321625 + 0.991324I
6.77802 4.24933I 2.37252 + 3.20470I
u = 0.396664 + 0.369740I
a = 1.23276 + 1.31882I
b = 0.190738 + 0.915706I
2.12350 + 1.85148I 4.32931 4.24457I
u = 0.396664 0.369740I
a = 1.23276 1.31882I
b = 0.190738 0.915706I
2.12350 1.85148I 4.32931 + 4.24457I
u = 1.49967 + 0.06625I
a = 0.574936 0.248373I
b = 0.819301 + 1.051500I
8.33063 + 6.97397I 8.76530 4.76080I
u = 1.49967 0.06625I
a = 0.574936 + 0.248373I
b = 0.819301 1.051500I
8.33063 6.97397I 8.76530 + 4.76080I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.356851 + 0.335765I
a = 1.25082 + 2.28548I
b = 0.656301 0.536511I
3.49379 + 2.71619I 7.39466 0.32501I
u = 0.356851 0.335765I
a = 1.25082 2.28548I
b = 0.656301 + 0.536511I
3.49379 2.71619I 7.39466 + 0.32501I
u = 1.56268 + 0.05774I
a = 1.259550 0.485799I
b = 0.975642 0.970457I
9.19399 6.70093I 9.82122 + 4.48583I
u = 1.56268 0.05774I
a = 1.259550 + 0.485799I
b = 0.975642 + 0.970457I
9.19399 + 6.70093I 9.82122 4.48583I
u = 0.315741
a = 1.20666
b = 0.408538
0.727380 13.8820
u = 1.68314 + 0.54519I
a = 0.259507 0.084155I
b = 0.986094 + 0.888888I
9.98818 + 1.53259I 10.28519 + 0.05847I
u = 1.68314 0.54519I
a = 0.259507 + 0.084155I
b = 0.986094 0.888888I
9.98818 1.53259I 10.28519 0.05847I
u = 1.66969 + 0.71456I
a = 0.950831 + 0.876319I
b = 0.87419 + 1.14110I
8.2934 15.6503I 8.00000 + 8.25494I
u = 1.66969 0.71456I
a = 0.950831 0.876319I
b = 0.87419 1.14110I
8.2934 + 15.6503I 8.00000 8.25494I
6
II.
I
u
2
= h1.30 × 10
87
u
39
+ 1.53 × 10
87
u
38
+ · · · + 2.70 × 10
88
b 3.46 × 10
88
, 5.35 ×
10
86
u
39
+5.15×10
86
u
38
+· · ·+2.70×10
88
a+9.82×10
88
, u
40
+u
39
+· · ·15u+1i
(i) Arc colorings
a
4
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
7
=
0.0198277u
39
0.0190923u
38
+ ··· 44.7904u 3.63997
0.0480005u
39
0.0568927u
38
+ ··· + 0.311946u + 1.28197
a
6
=
0.0281728u
39
+ 0.0378004u
38
+ ··· 45.1024u 4.92194
0.0480005u
39
0.0568927u
38
+ ··· + 0.311946u + 1.28197
a
11
=
0.536629u
39
+ 0.596877u
38
+ ··· 25.4262u 5.72637
0.0756455u
39
0.0881317u
38
+ ··· + 1.50300u + 0.486117
a
3
=
0.458136u
39
+ 0.471790u
38
+ ··· + 63.8377u 7.67485
0.0990701u
39
0.0884537u
38
+ ··· 17.1405u + 0.775723
a
2
=
0.0573134u
39
+ 0.0688277u
38
+ ··· + 43.4630u + 6.53740
0.0953537u
39
+ 0.101112u
38
+ ··· + 5.88241u 2.22024
a
5
=
0.638325u
39
0.657958u
38
+ ··· 103.579u + 9.05298
0.0880767u
39
+ 0.0956592u
38
+ ··· + 22.3476u 0.616054
a
10
=
0.536629u
39
+ 0.596877u
38
+ ··· 25.4262u 5.72637
0.0734017u
39
0.0888770u
38
+ ··· + 1.87009u + 0.425868
a
9
=
0.610031u
39
+ 0.685754u
38
+ ··· 27.2963u 6.15224
0.0734017u
39
0.0888770u
38
+ ··· + 1.87009u + 0.425868
a
8
=
0.542040u
39
+ 0.596575u
38
+ ··· 24.9003u 5.80209
0.0788525u
39
0.0842106u
38
+ ··· + 2.11993u + 0.404680
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.442497u
39
+ 0.473863u
38
+ ··· + 3.13307u + 13.3769
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
40
+ 8u
39
+ ··· + 1381u + 121
c
2
, c
5
, c
6
c
11
u
40
2u
39
+ ··· + 29u + 11
c
3
, c
10
(u
20
+ 5u
19
+ ··· + 5u + 1)
2
c
4
(u
20
5u
19
+ ··· 6u + 1)
2
c
7
u
40
18u
38
+ ··· + 26588u + 210103
c
8
u
40
2u
39
+ ··· 350134u + 28487
c
9
, c
12
u
40
+ u
39
+ ··· 15u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
40
+ 40y
39
+ ··· + 111361y + 14641
c
2
, c
5
, c
6
c
11
y
40
+ 8y
39
+ ··· + 1381y + 121
c
3
, c
10
(y
20
y
19
+ ··· 9y + 1)
2
c
4
(y
20
y
19
+ ··· 20y + 1)
2
c
7
y
40
36y
39
+ ··· + 252213388832y + 44143270609
c
8
y
40
+ 40y
39
+ ··· 4553546458y + 811509169
c
9
, c
12
y
40
33y
39
+ ··· + 5y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.789817 + 0.551198I
a = 0.69551 + 1.55288I
b = 0.459315 + 1.209800I
1.25686 + 2.87744I 8.53861 + 0.21509I
u = 0.789817 0.551198I
a = 0.69551 1.55288I
b = 0.459315 1.209800I
1.25686 2.87744I 8.53861 0.21509I
u = 0.882283 + 0.194843I
a = 0.417404 0.174483I
b = 1.234230 + 0.246821I
3.22335 0.66671I 5.55879 + 11.26225I
u = 0.882283 0.194843I
a = 0.417404 + 0.174483I
b = 1.234230 0.246821I
3.22335 + 0.66671I 5.55879 11.26225I
u = 1.096700 + 0.080097I
a = 0.169582 0.382784I
b = 0.661294 + 0.316017I
1.73797 + 1.66833I 9.09788 4.11752I
u = 1.096700 0.080097I
a = 0.169582 + 0.382784I
b = 0.661294 0.316017I
1.73797 1.66833I 9.09788 + 4.11752I
u = 0.702136 + 0.452232I
a = 1.65697 + 0.89964I
b = 0.604929 + 1.075710I
5.01038 2.16864I 2.33481 + 6.10094I
u = 0.702136 0.452232I
a = 1.65697 0.89964I
b = 0.604929 1.075710I
5.01038 + 2.16864I 2.33481 6.10094I
u = 1.178690 + 0.159087I
a = 0.183886 + 0.503919I
b = 0.538174 + 0.434982I
0.69886 4.77224I 8.00000 + 7.57794I
u = 1.178690 0.159087I
a = 0.183886 0.503919I
b = 0.538174 0.434982I
0.69886 + 4.77224I 8.00000 7.57794I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000670 + 0.723305I
a = 0.588918 1.139490I
b = 0.40494 1.37467I
1.08479 6.65241I 8.00000 + 8.68586I
u = 1.000670 0.723305I
a = 0.588918 + 1.139490I
b = 0.40494 + 1.37467I
1.08479 + 6.65241I 8.00000 8.68586I
u = 0.958749 + 0.984714I
a = 0.41472 + 1.38571I
b = 0.465289 + 0.991245I
0.69886 + 4.77224I 0
u = 0.958749 0.984714I
a = 0.41472 1.38571I
b = 0.465289 0.991245I
0.69886 4.77224I 0
u = 1.50241 + 0.07716I
a = 0.496444 0.235822I
b = 0.983741 + 0.983994I
9.17040 + 0.45837I 0
u = 1.50241 0.07716I
a = 0.496444 + 0.235822I
b = 0.983741 0.983994I
9.17040 0.45837I 0
u = 1.50669 + 0.14155I
a = 1.44000 0.34489I
b = 0.940968 0.791711I
9.17040 + 0.45837I 0
u = 1.50669 0.14155I
a = 1.44000 + 0.34489I
b = 0.940968 + 0.791711I
9.17040 0.45837I 0
u = 1.52444 + 0.02714I
a = 0.708019 + 0.222574I
b = 0.352756 + 0.830770I
1.25686 + 2.87744I 0
u = 1.52444 0.02714I
a = 0.708019 0.222574I
b = 0.352756 0.830770I
1.25686 2.87744I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.284736 + 0.328185I
a = 4.60209 1.08232I
b = 0.118953 + 0.502474I
5.01038 + 2.16864I 2.33481 6.10094I
u = 0.284736 0.328185I
a = 4.60209 + 1.08232I
b = 0.118953 0.502474I
5.01038 2.16864I 2.33481 + 6.10094I
u = 1.59822 + 0.22825I
a = 0.335646 0.321778I
b = 0.129954 0.886577I
1.73797 + 1.66833I 0
u = 1.59822 0.22825I
a = 0.335646 + 0.321778I
b = 0.129954 + 0.886577I
1.73797 1.66833I 0
u = 1.60666 + 0.21833I
a = 1.27939 + 0.87709I
b = 0.562169 + 0.793968I
1.08479 6.65241I 0
u = 1.60666 0.21833I
a = 1.27939 0.87709I
b = 0.562169 0.793968I
1.08479 + 6.65241I 0
u = 1.56979 + 0.64601I
a = 0.224170 + 0.117637I
b = 1.115240 0.763070I
9.55391 8.46488I 0
u = 1.56979 0.64601I
a = 0.224170 0.117637I
b = 1.115240 + 0.763070I
9.55391 + 8.46488I 0
u = 1.74383 + 0.19203I
a = 1.44796 + 1.25852I
b = 0.391026 + 0.507425I
3.22335 0.66671I 0
u = 1.74383 0.19203I
a = 1.44796 1.25852I
b = 0.391026 0.507425I
3.22335 + 0.66671I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.46290 + 1.79705I
a = 0.361971 + 0.723514I
b = 0.776259 + 0.727271I
3.67864 + 0.89894I 0
u = 0.46290 1.79705I
a = 0.361971 0.723514I
b = 0.776259 0.727271I
3.67864 0.89894I 0
u = 1.76739 + 0.61988I
a = 1.022920 0.802923I
b = 0.906801 1.018680I
9.55391 + 8.46488I 0
u = 1.76739 0.61988I
a = 1.022920 + 0.802923I
b = 0.906801 + 1.018680I
9.55391 8.46488I 0
u = 0.0113205 + 0.0913606I
a = 2.90917 4.34403I
b = 1.072060 + 0.812581I
3.67864 + 0.89894I 14.7379 6.8397I
u = 0.0113205 0.0913606I
a = 2.90917 + 4.34403I
b = 1.072060 0.812581I
3.67864 0.89894I 14.7379 + 6.8397I
u = 0.0698929 + 0.0329543I
a = 6.77015 1.38688I
b = 0.98494 1.07091I
2.89322 6.53100I 16.6269 + 9.9012I
u = 0.0698929 0.0329543I
a = 6.77015 + 1.38688I
b = 0.98494 + 1.07091I
2.89322 + 6.53100I 16.6269 9.9012I
u = 0.23102 + 2.12015I
a = 0.283053 0.859606I
b = 0.710501 0.983550I
2.89322 + 6.53100I 0
u = 0.23102 2.12015I
a = 0.283053 + 0.859606I
b = 0.710501 + 0.983550I
2.89322 6.53100I 0
13
III. I
u
3
= h−u
10
+ 29u
9
+ · · · + 47b 11, 31u
10
+ 41u
9
+ · · · + 47a
129, u
11
+ u
10
+ · · · 2u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
7
=
0.659574u
10
0.872340u
9
+ ··· + 0.808511u + 2.74468
0.0212766u
10
0.617021u
9
+ ··· + 0.425532u + 0.234043
a
6
=
0.680851u
10
0.255319u
9
+ ··· + 0.382979u + 2.51064
0.0212766u
10
0.617021u
9
+ ··· + 0.425532u + 0.234043
a
11
=
0.170213u
10
1.06383u
9
+ ··· + 0.595745u + 0.127660
0.191489u
10
+ 0.446809u
9
+ ··· 1.17021u 0.893617
a
3
=
2.04255u
10
2.76596u
9
+ ··· + 4.14894u + 1.53191
0.106383u
10
0.0851064u
9
+ ··· 0.872340u + 0.170213
a
2
=
2.17021u
10
3.06383u
9
+ ··· + 0.595745u + 3.12766
0.744681u
10
+ 0.404255u
9
+ ··· 1.10638u 0.808511
a
5
=
1.65957u
10
+ 1.87234u
9
+ ··· 3.80851u + 0.255319
0.191489u
10
+ 0.446809u
9
+ ··· + 0.829787u 0.893617
a
10
=
0.170213u
10
1.06383u
9
+ ··· + 0.595745u + 0.127660
u
a
9
=
0.170213u
10
1.06383u
9
+ ··· + 1.59574u + 0.127660
u
a
8
=
0.361702u
10
1.51064u
9
+ ··· + 0.765957u + 1.02128
0.340426u
10
+ 0.127660u
9
+ ··· 1.19149u 0.255319
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
69
47
u
10
168
47
u
9
315
47
u
8
+
379
47
u
7
+
117
47
u
6
524
47
u
5
+
254
47
u
4
388
47
u
3
906
47
u
2
+
111
47
u +
524
47
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
5u
10
+ ··· 5u + 1
c
2
, c
6
u
11
+ u
10
+ 3u
9
+ 2u
8
+ 5u
7
+ 3u
6
+ 5u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ u + 1
c
3
u
11
4u
10
+ ··· + u 1
c
4
u
11
+ u
10
+ 5u
9
+ 4u
8
+ 7u
7
+ 4u
6
+ u
5
+ u
4
2u
3
+ 2u
2
+ 1
c
5
, c
11
u
11
u
10
+ 3u
9
2u
8
+ 5u
7
3u
6
+ 5u
5
3u
4
+ 3u
3
3u
2
+ u 1
c
7
u
11
+ u
10
+ 2u
9
+ 3u
7
+ 9u
6
+ 9u
5
+ 9u
4
+ 4u
3
+ 6u
2
+ 2u 5
c
8
u
11
+ 2u
8
13u
6
6u
5
+ 10u
4
6u
3
+ 8u
2
+ 28u 1
c
9
, c
12
u
11
+ u
10
2u
9
+ 3u
7
u
6
+ 2u
5
+ 4u
4
2u
3
2u
2
+ 1
c
10
u
11
+ 4u
10
+ ··· + u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ 5y
10
+ ··· + 7y 1
c
2
, c
5
, c
6
c
11
y
11
+ 5y
10
+ ··· 5y 1
c
3
, c
10
y
11
+ 4y
10
+ ··· + 9y 1
c
4
y
11
+ 9y
10
+ ··· 4y 1
c
7
y
11
+ 3y
10
+ ··· + 64y 25
c
8
y
11
16y
8
+ ··· + 800y 1
c
9
, c
12
y
11
5y
10
+ ··· + 4y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.194813 + 1.083600I
a = 0.188300 0.835649I
b = 0.798763 1.016830I
2.21482 6.23543I 4.17349 + 4.51231I
u = 0.194813 1.083600I
a = 0.188300 + 0.835649I
b = 0.798763 + 1.016830I
2.21482 + 6.23543I 4.17349 4.51231I
u = 1.23629
a = 0.757555
b = 0.786378
3.42447 12.2680
u = 1.117710 + 0.686847I
a = 0.73823 + 1.39930I
b = 0.332169 + 1.072400I
3.10454 + 5.87057I 1.19665 6.91999I
u = 1.117710 0.686847I
a = 0.73823 1.39930I
b = 0.332169 1.072400I
3.10454 5.87057I 1.19665 + 6.91999I
u = 0.636137 + 0.234541I
a = 2.56547 1.10753I
b = 0.431158 1.012670I
5.96203 + 4.88129I 4.96418 7.44610I
u = 0.636137 0.234541I
a = 2.56547 + 1.10753I
b = 0.431158 + 1.012670I
5.96203 4.88129I 4.96418 + 7.44610I
u = 0.471226 + 0.455107I
a = 2.42243 + 0.72141I
b = 0.684227 + 0.713438I
3.58964 3.66617I 5.73651 + 8.18144I
u = 0.471226 0.455107I
a = 2.42243 0.72141I
b = 0.684227 0.713438I
3.58964 + 3.66617I 5.73651 8.18144I
u = 1.359290 + 0.343110I
a = 0.317420 + 0.120454I
b = 0.091264 + 0.708132I
0.50447 1.50110I 1.70486 + 0.65760I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.359290 0.343110I
a = 0.317420 0.120454I
b = 0.091264 0.708132I
0.50447 + 1.50110I 1.70486 0.65760I
18
IV.
I
u
4
= h−2u
9
+ u
8
+ · · · + b 3, u
9
u
8
+ · · · + a 6, u
10
4u
8
+ · · · + 3u + 1i
(i) Arc colorings
a
4
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
7
=
u
9
+ u
8
6u
7
5u
6
+ 10u
5
+ 11u
4
8u
3
8u
2
+ 5u + 6
2u
9
u
8
8u
7
2u
6
+ 15u
5
+ 7u
4
10u
3
6u
2
+ 6u + 3
a
6
=
u
9
+ 2u
8
+ 2u
7
3u
6
5u
5
+ 4u
4
+ 2u
3
2u
2
u + 3
2u
9
u
8
8u
7
2u
6
+ 15u
5
+ 7u
4
10u
3
6u
2
+ 6u + 3
a
11
=
3u
9
2u
8
11u
7
2u
6
+ 21u
5
+ 9u
4
14u
3
9u
2
+ 9u + 4
3u
9
+ 2u
8
+ 11u
7
+ u
6
19u
5
8u
4
+ 12u
3
+ 7u
2
7u 5
a
3
=
4u
9
+ u
8
+ 16u
7
+ 8u
6
27u
5
22u
4
+ 15u
3
+ 17u
2
9u 9
u
9
+ u
8
+ 3u
7
6u
5
u
4
+ 4u
3
+ u
2
3u
a
2
=
u
9
u
8
3u
7
+ u
6
+ 5u
5
2u
4
3u
3
+ 3u
2
+ 4u
u
9
+ 4u
7
+ 3u
6
7u
5
6u
4
+ 4u
3
+ 4u
2
3u 2
a
5
=
u
9
+ u
8
5u
7
6u
6
+ 6u
5
+ 13u
4
u
3
8u
2
+ 5
2u
9
u
8
8u
7
2u
6
+ 15u
5
+ 7u
4
10u
3
6u
2
+ 7u + 3
a
10
=
3u
9
2u
8
11u
7
2u
6
+ 21u
5
+ 9u
4
14u
3
9u
2
+ 9u + 4
2u
9
+ u
8
+ 8u
7
+ u
6
13u
5
6u
4
+ 8u
3
+ 4u
2
4u 3
a
9
=
5u
9
3u
8
19u
7
3u
6
+ 34u
5
+ 15u
4
22u
3
13u
2
+ 13u + 7
2u
9
+ u
8
+ 8u
7
+ u
6
13u
5
6u
4
+ 8u
3
+ 4u
2
4u 3
a
8
=
4u
9
2u
8
16u
7
4u
6
+ 30u
5
+ 15u
4
21u
3
14u
2
+ 13u + 7
u
9
+ u
8
+ 3u
7
5u
5
2u
4
+ 2u
3
+ 2u
2
2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 10u
9
+ 2u
8
+ 44u
7
+ 12u
6
72u
5
40u
4
+ 48u
3
+ 24u
2
28u 11
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
5u
9
+ ··· 5u + 1
c
2
, c
6
u
10
+ u
9
+ 3u
8
+ 3u
7
+ 5u
6
+ 5u
5
+ 5u
4
+ 3u
3
+ 3u
2
+ u + 1
c
3
(u
5
+ 2u
4
+ 3u
3
+ 2u
2
1)
2
c
4
(u
5
+ 2u
3
+ u
2
+ 1)
2
c
5
, c
11
u
10
u
9
+ 3u
8
3u
7
+ 5u
6
5u
5
+ 5u
4
3u
3
+ 3u
2
u + 1
c
7
u
10
3u
9
+ ··· 10u + 5
c
8
u
10
u
9
u
8
5u
7
+ 8u
6
+ 2u
5
+ 14u
4
+ u
3
+ u
2
2u + 1
c
9
, c
12
u
10
4u
8
3u
7
+ 6u
6
+ 7u
5
2u
4
5u
3
+ u
2
+ 3u + 1
c
10
(u
5
2u
4
+ 3u
3
2u
2
+ 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ y
9
+ 9y
8
+ 9y
7
+ 41y
6
+ 33y
5
+ 41y
4
+ 9y
3
+ 9y
2
+ y + 1
c
2
, c
5
, c
6
c
11
y
10
+ 5y
9
+ ··· + 5y + 1
c
3
, c
10
(y
5
+ 2y
4
+ y
3
+ 4y 1)
2
c
4
(y
5
+ 4y
4
+ 4y
3
y
2
2y 1)
2
c
7
y
10
+ 5y
9
+ ··· + 60y + 25
c
8
y
10
3y
9
+ ··· 2y + 1
c
9
, c
12
y
10
8y
9
+ ··· 7y + 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.804770 + 0.681218I
a = 0.35218 1.55295I
b = 0.364273 1.189650I
1.84330 3.45949I 1.65571 + 6.38968I
u = 0.804770 0.681218I
a = 0.35218 + 1.55295I
b = 0.364273 + 1.189650I
1.84330 + 3.45949I 1.65571 6.38968I
u = 0.723111 + 0.479695I
a = 2.48698 0.74114I
b = 0.386380 0.716912I
4.86920 1.42206I 4.77727 3.18139I
u = 0.723111 0.479695I
a = 2.48698 + 0.74114I
b = 0.386380 + 0.716912I
4.86920 + 1.42206I 4.77727 + 3.18139I
u = 1.011490 + 0.575037I
a = 0.444488 + 0.494221I
b = 0.869336 + 0.494221I
3.55538 14.13404 + 0.I
u = 1.011490 0.575037I
a = 0.444488 0.494221I
b = 0.869336 0.494221I
3.55538 14.13404 + 0.I
u = 0.529451 + 0.225672I
a = 2.29081 + 1.05667I
b = 0.582553 + 1.080900I
4.86920 1.42206I 4.77727 3.18139I
u = 0.529451 0.225672I
a = 2.29081 1.05667I
b = 0.582553 1.080900I
4.86920 + 1.42206I 4.77727 + 3.18139I
u = 1.62260 + 0.17621I
a = 0.481126 0.405232I
b = 0.235324 0.768526I
1.84330 + 3.45949I 1.65571 6.38968I
u = 1.62260 0.17621I
a = 0.481126 + 0.405232I
b = 0.235324 + 0.768526I
1.84330 3.45949I 1.65571 + 6.38968I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
10
5u
9
+ ··· 5u + 1)(u
11
5u
10
+ ··· 5u + 1)
· (u
19
+ 7u
18
+ ··· 4u 1)(u
40
+ 8u
39
+ ··· + 1381u + 121)
c
2
, c
6
(u
10
+ u
9
+ 3u
8
+ 3u
7
+ 5u
6
+ 5u
5
+ 5u
4
+ 3u
3
+ 3u
2
+ u + 1)
· (u
11
+ u
10
+ 3u
9
+ 2u
8
+ 5u
7
+ 3u
6
+ 5u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ u + 1)
· (u
19
+ u
18
+ ··· + 2u 1)(u
40
2u
39
+ ··· + 29u + 11)
c
3
((u
5
+ 2u
4
+ 3u
3
+ 2u
2
1)
2
)(u
11
4u
10
+ ··· + u 1)
· (u
19
11u
18
+ ··· + 60u 8)(u
20
+ 5u
19
+ ··· + 5u + 1)
2
c
4
(u
5
+ 2u
3
+ u
2
+ 1)
2
· (u
11
+ u
10
+ 5u
9
+ 4u
8
+ 7u
7
+ 4u
6
+ u
5
+ u
4
2u
3
+ 2u
2
+ 1)
· (u
19
+ 12u
18
+ ··· 176u 32)(u
20
5u
19
+ ··· 6u + 1)
2
c
5
, c
11
(u
10
u
9
+ 3u
8
3u
7
+ 5u
6
5u
5
+ 5u
4
3u
3
+ 3u
2
u + 1)
· (u
11
u
10
+ 3u
9
2u
8
+ 5u
7
3u
6
+ 5u
5
3u
4
+ 3u
3
3u
2
+ u 1)
· (u
19
+ u
18
+ ··· + 2u 1)(u
40
2u
39
+ ··· + 29u + 11)
c
7
(u
10
3u
9
+ ··· 10u + 5)
· (u
11
+ u
10
+ 2u
9
+ 3u
7
+ 9u
6
+ 9u
5
+ 9u
4
+ 4u
3
+ 6u
2
+ 2u 5)
· (u
19
u
18
+ ··· + 1133u 517)
· (u
40
18u
38
+ ··· + 26588u + 210103)
c
8
(u
10
u
9
u
8
5u
7
+ 8u
6
+ 2u
5
+ 14u
4
+ u
3
+ u
2
2u + 1)
· (u
11
+ 2u
8
13u
6
6u
5
+ 10u
4
6u
3
+ 8u
2
+ 28u 1)
· (u
19
+ 11u
17
+ ··· 7u 13)(u
40
2u
39
+ ··· 350134u + 28487)
c
9
, c
12
(u
10
4u
8
3u
7
+ 6u
6
+ 7u
5
2u
4
5u
3
+ u
2
+ 3u + 1)
· (u
11
+ u
10
2u
9
+ 3u
7
u
6
+ 2u
5
+ 4u
4
2u
3
2u
2
+ 1)
· (u
19
+ u
18
+ ··· 3u 1)(u
40
+ u
39
+ ··· 15u + 1)
c
10
((u
5
2u
4
+ 3u
3
2u
2
+ 1)
2
)(u
11
+ 4u
10
+ ··· + u + 1)
· (u
19
11u
18
+ ··· + 60u 8)(u
20
+ 5u
19
+ ··· + 5u + 1)
2
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ y
9
+ 9y
8
+ 9y
7
+ 41y
6
+ 33y
5
+ 41y
4
+ 9y
3
+ 9y
2
+ y + 1)
· (y
11
+ 5y
10
+ ··· + 7y 1)(y
19
+ 23y
18
+ ··· + 28y 1)
· (y
40
+ 40y
39
+ ··· + 111361y + 14641)
c
2
, c
5
, c
6
c
11
(y
10
+ 5y
9
+ ··· + 5y + 1)(y
11
+ 5y
10
+ ··· 5y 1)
· (y
19
+ 7y
18
+ ··· 4y 1)(y
40
+ 8y
39
+ ··· + 1381y + 121)
c
3
, c
10
((y
5
+ 2y
4
+ y
3
+ 4y 1)
2
)(y
11
+ 4y
10
+ ··· + 9y 1)
· (y
19
+ 3y
18
+ ··· 368y 64)(y
20
y
19
+ ··· 9y + 1)
2
c
4
((y
5
+ 4y
4
+ 4y
3
y
2
2y 1)
2
)(y
11
+ 9y
10
+ ··· 4y 1)
· (y
19
+ 8y
18
+ ··· + 6912y 1024)(y
20
y
19
+ ··· 20y + 1)
2
c
7
(y
10
+ 5y
9
+ ··· + 60y + 25)(y
11
+ 3y
10
+ ··· + 64y 25)
· (y
19
7y
18
+ ··· + 566093y 267289)
· (y
40
36y
39
+ ··· + 252213388832y + 44143270609)
c
8
(y
10
3y
9
+ ··· 2y + 1)(y
11
16y
8
+ ··· + 800y 1)
· (y
19
+ 22y
18
+ ··· 2291y 169)
· (y
40
+ 40y
39
+ ··· 4553546458y + 811509169)
c
9
, c
12
(y
10
8y
9
+ ··· 7y + 1)(y
11
5y
10
+ ··· + 4y 1)
· (y
19
23y
18
+ ··· + 9y 1)(y
40
33y
39
+ ··· + 5y + 1)
24