12n
0397
(K12n
0397
)
A knot diagram
1
Linearized knot diagam
3 5 12 10 2 11 3 5 4 9 7 8
Solving Sequence
4,10 5,12
3 2 1 9 8 7 11 6
c
4
c
3
c
2
c
1
c
9
c
8
c
7
c
11
c
6
c
5
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
23
+ 8u
22
+ ··· + 2b + 26, 23u
23
133u
22
+ ··· + 8a 112, u
24
+ 7u
23
+ ··· + 44u + 8i
I
u
2
= h2u
17
9u
15
+ 21u
13
28u
11
+ 2u
10
+ 23u
9
7u
8
7u
7
+ 10u
6
5u
5
6u
4
+ 7u
3
+ b 3u + 1,
2u
17
+ u
16
+ ··· + a 3,
u
18
5u
16
+ 13u
14
20u
12
+ u
11
+ 20u
10
4u
9
11u
8
+ 7u
7
+ u
6
6u
5
+ 4u
4
+ 2u
3
3u
2
+ 1i
I
u
3
= h109a
3
u
2
389a
2
u
2
+ ··· + 1134a 188, a
4
+ a
3
u + a
2
u
2
a
3
10a
2
u 5u
2
a 3au 5a 4u 1,
u
3
u
2
+ 1i
I
u
4
= hb + u, a
2
+ au + 4u
2
6u + 4, u
3
u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
23
+ 8u
22
+ · · · + 2b + 26, 23u
23
133u
22
+ · · · + 8a 112, u
24
+
7u
23
+ · · · + 44u + 8i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
12
=
23
8
u
23
+
133
8
u
22
+ ··· +
145
2
u + 14
1
2
u
23
4u
22
+ ···
105
2
u 13
a
3
=
3.37500u
23
+ 20.8750u
22
+ ··· + 119.750u + 25.5000
3
4
u
23
25
4
u
22
+ ··· 71u 17
a
2
=
3.12500u
23
+ 18.1250u
22
+ ··· + 96.7500u + 20.5000
15
4
u
23
89
4
u
22
+ ··· 117u 25
a
1
=
57
8
u
23
339
8
u
22
+ ···
359
2
u 34
2u
23
13
2
u
22
+ ··· +
105
2
u + 15
a
9
=
u
u
a
8
=
u
3
u
5
u
3
+ u
a
7
=
21
8
u
23
+
133
8
u
22
+ ··· +
375
4
u + 19
1
4
u
23
13
4
u
22
+ ···
63
2
u 7
a
11
=
u
3
u
3
+ u
a
6
=
27
8
u
23
155
8
u
22
+ ···
281
4
u 13
17
4
u
23
+
105
4
u
22
+ ··· +
273
2
u + 27
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
23
+ 31u
22
+ 68u
21
+ 5u
20
274u
19
532u
18
143u
17
+
1013u
16
+ 1701u
15
+ 430u
14
2124u
13
3067u
12
781u
11
+ 2554u
10
+ 3417u
9
+
1220u
8
1377u
7
2052u
6
1028u
5
+ 135u
4
+ 565u
3
+ 416u
2
+ 168u + 30
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 40u
23
+ ··· 13u + 1
c
2
, c
5
, c
7
u
24
+ 20u
22
+ ··· 3u + 1
c
3
u
24
12u
23
+ ··· 80u + 8
c
4
, c
9
u
24
+ 7u
23
+ ··· + 44u + 8
c
6
, c
11
u
24
+ u
23
+ ··· 2u + 1
c
8
u
24
+ 21u
23
+ ··· + 6588u + 1192
c
10
u
24
11u
23
+ ··· 16u + 64
c
12
u
24
u
23
+ ··· 146u + 481
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
132y
23
+ ··· 117y + 1
c
2
, c
5
, c
7
y
24
+ 40y
23
+ ··· 13y + 1
c
3
y
24
+ 2y
23
+ ··· 544y + 64
c
4
, c
9
y
24
11y
23
+ ··· 16y + 64
c
6
, c
11
y
24
33y
23
+ ··· + 38y + 1
c
8
y
24
+ y
23
+ ··· + 2294768y + 1420864
c
10
y
24
+ 5y
23
+ ··· 29952y + 4096
c
12
y
24
+ 57y
23
+ ··· 2861140y + 231361
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.915808 + 0.204074I
a = 0.308825 0.358584I
b = 0.420523 + 0.284056I
1.43685 + 0.26824I 8.25591 0.95433I
u = 0.915808 0.204074I
a = 0.308825 + 0.358584I
b = 0.420523 0.284056I
1.43685 0.26824I 8.25591 + 0.95433I
u = 0.768219 + 0.429349I
a = 0.123850 + 0.819559I
b = 0.846044 0.245760I
1.24603 1.86074I 2.80514 + 4.17649I
u = 0.768219 0.429349I
a = 0.123850 0.819559I
b = 0.846044 + 0.245760I
1.24603 + 1.86074I 2.80514 4.17649I
u = 0.485800 + 1.043550I
a = 0.700910 0.279759I
b = 1.10350 + 1.17587I
16.7128 1.0407I 2.67460 + 1.48969I
u = 0.485800 1.043550I
a = 0.700910 + 0.279759I
b = 1.10350 1.17587I
16.7128 + 1.0407I 2.67460 1.48969I
u = 0.533713 + 1.023160I
a = 0.687357 + 0.197125I
b = 1.16784 1.06324I
17.0702 + 7.3018I 2.46091 2.45661I
u = 0.533713 1.023160I
a = 0.687357 0.197125I
b = 1.16784 + 1.06324I
17.0702 7.3018I 2.46091 + 2.45661I
u = 0.454642 + 0.697047I
a = 1.245930 + 0.051953I
b = 0.672512 0.074959I
2.81566 + 1.10173I 1.51034 + 1.46986I
u = 0.454642 0.697047I
a = 1.245930 0.051953I
b = 0.672512 + 0.074959I
2.81566 1.10173I 1.51034 1.46986I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.115630 + 0.467131I
a = 1.09132 + 1.37936I
b = 0.103648 1.034020I
3.47697 + 2.26614I 7.38300 + 0.31343I
u = 1.115630 0.467131I
a = 1.09132 1.37936I
b = 0.103648 + 1.034020I
3.47697 2.26614I 7.38300 0.31343I
u = 1.065690 + 0.574907I
a = 0.844325 1.000110I
b = 0.707678 + 0.133194I
1.01811 6.00438I 3.14307 + 1.73510I
u = 1.065690 0.574907I
a = 0.844325 + 1.000110I
b = 0.707678 0.133194I
1.01811 + 6.00438I 3.14307 1.73510I
u = 1.162360 + 0.452653I
a = 0.55210 + 1.89083I
b = 0.452316 1.190600I
3.55309 5.72713I 8.49615 + 7.00160I
u = 1.162360 0.452653I
a = 0.55210 1.89083I
b = 0.452316 + 1.190600I
3.55309 + 5.72713I 8.49615 7.00160I
u = 0.068716 + 0.634302I
a = 0.139760 0.437493I
b = 0.335421 + 0.843529I
0.48313 + 1.57128I 3.43704 4.17540I
u = 0.068716 0.634302I
a = 0.139760 + 0.437493I
b = 0.335421 0.843529I
0.48313 1.57128I 3.43704 + 4.17540I
u = 1.373310 + 0.032921I
a = 0.55767 + 1.51729I
b = 1.20249 1.15069I
9.59467 + 4.37178I 1.10728 2.37526I
u = 1.373310 0.032921I
a = 0.55767 1.51729I
b = 1.20249 + 1.15069I
9.59467 4.37178I 1.10728 + 2.37526I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.165950 + 0.738930I
a = 1.12460 1.76379I
b = 1.18433 + 1.02927I
15.0954 13.6960I 0.56874 + 6.51708I
u = 1.165950 0.738930I
a = 1.12460 + 1.76379I
b = 1.18433 1.02927I
15.0954 + 13.6960I 0.56874 6.51708I
u = 1.199670 + 0.725513I
a = 0.909394 0.070498I
b = 1.07127 1.22148I
14.4845 5.3708I 0.80273 + 2.57897I
u = 1.199670 0.725513I
a = 0.909394 + 0.070498I
b = 1.07127 + 1.22148I
14.4845 + 5.3708I 0.80273 2.57897I
7
II.
I
u
2
= h2u
17
9u
15
+· · ·+b+1, 2u
17
+u
16
+· · ·+a3, u
18
5u
16
+· · ·3u
2
+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
12
=
2u
17
u
16
+ ··· 3u + 3
2u
17
+ 9u
15
+ ··· + 3u 1
a
3
=
2u
17
3u
16
+ ··· 3u + 4
2u
17
+ 2u
16
+ ··· + 3u 3
a
2
=
3u
17
3u
16
+ ··· 4u + 4
3u
17
+ 2u
16
+ ··· + 4u 3
a
1
=
3u
17
12u
15
+ ··· 4u + 2
3u
17
+ 13u
15
+ ··· + 4u 1
a
9
=
u
u
a
8
=
u
3
u
5
u
3
+ u
a
7
=
2u
17
u
16
+ ··· 2u
2
+ 5u
u
15
+ 4u
13
8u
11
+ 8u
9
u
8
4u
7
+ 3u
6
u
5
3u
4
+ 2u
3
u + 1
a
11
=
u
3
u
3
+ u
a
6
=
2u
17
+ 10u
15
+ ··· + 5u 1
u
15
+ u
14
+ ··· 2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
17
9u
16
36u
15
+ 40u
14
+ 85u
13
93u
12
115u
11
+ 128u
10
+
88u
9
123u
8
u
7
+ 66u
6
62u
5
10u
4
+ 52u
3
25u
2
10u + 9
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
18u
17
+ ··· 11u + 1
c
2
, c
7
u
18
+ 9u
16
+ ··· u + 1
c
3
u
18
+ 7u
17
+ ··· 8u
2
+ 1
c
4
u
18
5u
16
+ ··· 3u
2
+ 1
c
5
u
18
+ 9u
16
+ ··· + u + 1
c
6
u
18
+ u
17
+ ··· + 2u + 1
c
8
u
18
+ 3u
16
+ ··· 3u
2
+ 1
c
9
u
18
5u
16
+ ··· 3u
2
+ 1
c
10
u
18
10u
17
+ ··· 6u + 1
c
11
u
18
u
17
+ ··· 2u + 1
c
12
u
18
+ u
17
+ ··· 4u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
34y
17
+ ··· + 15y + 1
c
2
, c
5
, c
7
y
18
+ 18y
17
+ ··· + 11y + 1
c
3
y
18
+ 3y
17
+ ··· 16y + 1
c
4
, c
9
y
18
10y
17
+ ··· 6y + 1
c
6
, c
11
y
18
7y
17
+ ··· 10y + 1
c
8
y
18
+ 6y
17
+ ··· 6y + 1
c
10
y
18
+ 2y
17
+ ··· 2y + 1
c
12
y
18
+ 19y
17
+ ··· 8y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.904746 + 0.245141I
a = 0.82192 + 2.64809I
b = 0.886797 0.175898I
4.91866 + 1.07876I 1.73448 6.58149I
u = 0.904746 0.245141I
a = 0.82192 2.64809I
b = 0.886797 + 0.175898I
4.91866 1.07876I 1.73448 + 6.58149I
u = 1.016240 + 0.389137I
a = 0.572143 0.544697I
b = 1.041090 + 0.572987I
0.238865 + 0.538366I 0.033663 + 0.201088I
u = 1.016240 0.389137I
a = 0.572143 + 0.544697I
b = 1.041090 0.572987I
0.238865 0.538366I 0.033663 0.201088I
u = 0.881768 + 0.726056I
a = 1.46172 0.04608I
b = 0.357663 0.073463I
8.08514 2.77083I 1.63500 + 2.47333I
u = 0.881768 0.726056I
a = 1.46172 + 0.04608I
b = 0.357663 + 0.073463I
8.08514 + 2.77083I 1.63500 2.47333I
u = 1.037690 + 0.534998I
a = 1.34462 1.39462I
b = 0.838028 + 0.445978I
1.29375 + 6.79726I 0.08657 10.35459I
u = 1.037690 0.534998I
a = 1.34462 + 1.39462I
b = 0.838028 0.445978I
1.29375 6.79726I 0.08657 + 10.35459I
u = 0.551142 + 0.552499I
a = 1.46793 0.56794I
b = 0.719476 0.551592I
2.79898 2.36719I 1.07277 + 3.81163I
u = 0.551142 0.552499I
a = 1.46793 + 0.56794I
b = 0.719476 + 0.551592I
2.79898 + 2.36719I 1.07277 3.81163I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.098568 + 0.770121I
a = 0.1181270 + 0.0762608I
b = 0.399233 + 1.101750I
0.95237 + 1.65920I 2.51109 2.64437I
u = 0.098568 0.770121I
a = 0.1181270 0.0762608I
b = 0.399233 1.101750I
0.95237 1.65920I 2.51109 + 2.64437I
u = 0.703037 + 0.218633I
a = 0.48139 + 1.75543I
b = 1.019720 0.825776I
1.54644 3.40184I 4.66379 + 8.73031I
u = 0.703037 0.218633I
a = 0.48139 1.75543I
b = 1.019720 + 0.825776I
1.54644 + 3.40184I 4.66379 8.73031I
u = 1.194980 + 0.426737I
a = 0.46757 + 1.90862I
b = 0.59911 1.38196I
2.73425 5.77721I 1.49014 + 6.51918I
u = 1.194980 0.426737I
a = 0.46757 1.90862I
b = 0.59911 + 1.38196I
2.73425 + 5.77721I 1.49014 6.51918I
u = 1.203880 + 0.487334I
a = 0.98453 + 1.10774I
b = 0.127799 1.272500I
2.29556 + 3.01264I 0.71705 2.77521I
u = 1.203880 0.487334I
a = 0.98453 1.10774I
b = 0.127799 + 1.272500I
2.29556 3.01264I 0.71705 + 2.77521I
12
III. I
u
3
=
h109a
3
u
2
389a
2
u
2
+· · ·+1134a 188, a
2
u
2
5u
2
a+· · ·5a 1, u
3
u
2
+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
12
=
a
0.0527590a
3
u
2
+ 0.188287a
2
u
2
+ ··· 0.548887a + 0.0909971
a
3
=
0.0387222a
3
u
2
+ 0.260891a
2
u
2
+ ··· + 0.861568a + 0.836883
0.227009a
3
u
2
+ 0.264279a
2
u
2
+ ··· 2.42594a 0.424976
a
2
=
0.170378a
3
u
2
+ 0.0479187a
2
u
2
+ ··· + 1.79090a + 0.582285
0.251210a
3
u
2
+ 0.0387222a
2
u
2
+ ··· 2.71442a 1.13553
a
1
=
0.300581a
3
u
2
+ 0.118587a
2
u
2
+ ··· 1.06292a 1.16505
0.174250a
3
u
2
+ 0.0759923a
2
u
2
+ ··· 0.877057a 0.515973
a
9
=
u
u
a
8
=
u
2
+ 1
u
2
a
7
=
0.316070a
3
u
2
0.114230a
2
u
2
+ ··· + 2.40755a + 2.39981
0.0963214a
3
u
2
+ 0.0822846a
2
u
2
+ ··· 1.26815a 0.787996
a
11
=
u
2
1
u
2
+ u + 1
a
6
=
0.188771a
3
u
2
0.0406583a
2
u
2
+ ··· + 1.45015a + 1.64230
0.241530a
3
u
2
+ 0.228945a
2
u
2
+ ··· 1.99903a 0.551307
(ii) Obstruction class = 1
(iii) Cusp Shapes =
218
1033
a
3
u
2
938
1033
a
3
u
778
1033
a
2
u
2
+
198
1033
a
3
+
1092
1033
a
2
u +
7756
1033
u
2
a
138
1033
a
2
2856
1033
au +
2132
1033
u
2
+
2268
1033
a
3582
1033
u
2442
1033
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 20u
11
+ ··· 972u + 729
c
2
, c
5
, c
7
u
12
+ 4u
11
+ ··· + 108u + 27
c
3
(u
3
+ u
2
1)
4
c
4
, c
9
(u
3
u
2
+ 1)
4
c
6
, c
11
u
12
+ 3u
11
+ ··· + 8u + 8
c
8
(u
3
3u
2
+ 2u + 1)
4
c
10
(u
3
u
2
+ 2u 1)
4
c
12
u
12
+ 5u
11
+ ··· 52u + 8
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
60y
11
+ ··· + 157464y + 531441
c
2
, c
5
, c
7
y
12
+ 20y
11
+ ··· 972y + 729
c
3
, c
4
, c
9
(y
3
y
2
+ 2y 1)
4
c
6
, c
11
y
12
+ y
11
+ ··· + 288y + 64
c
8
(y
3
5y
2
+ 10y 1)
4
c
10
(y
3
+ 3y
2
+ 2y 1)
4
c
12
y
12
+ 37y
11
+ ··· 1360y + 64
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.803930 0.531274I
b = 0.877439 + 0.744862I
4.93480 + 5.65624I 2.00000 5.95889I
u = 0.877439 + 0.744862I
a = 0.423353 + 0.379086I
b = 0.754878
9.07239 + 2.82812I 8.52927 2.97945I
u = 0.877439 + 0.744862I
a = 2.29278 1.33815I
b = 0.877439 + 0.744862I
4.93480 + 5.65624I 2.00000 5.95889I
u = 0.877439 + 0.744862I
a = 3.64263 + 0.74547I
b = 0.754878
9.07239 + 2.82812I 8.52927 2.97945I
u = 0.877439 0.744862I
a = 0.803930 + 0.531274I
b = 0.877439 0.744862I
4.93480 5.65624I 2.00000 + 5.95889I
u = 0.877439 0.744862I
a = 0.423353 0.379086I
b = 0.754878
9.07239 2.82812I 8.52927 + 2.97945I
u = 0.877439 0.744862I
a = 2.29278 + 1.33815I
b = 0.877439 0.744862I
4.93480 5.65624I 2.00000 + 5.95889I
u = 0.877439 0.744862I
a = 3.64263 0.74547I
b = 0.754878
9.07239 2.82812I 8.52927 + 2.97945I
u = 0.754878
a = 0.374103 + 0.381158I
b = 0.877439 0.744862I
0.79722 2.82812I 4.52927 + 2.97945I
u = 0.754878
a = 0.374103 0.381158I
b = 0.877439 + 0.744862I
0.79722 + 2.82812I 4.52927 2.97945I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.754878
a = 0.50334 + 2.61282I
b = 0.877439 0.744862I
0.79722 2.82812I 4.52927 + 2.97945I
u = 0.754878
a = 0.50334 2.61282I
b = 0.877439 + 0.744862I
0.79722 + 2.82812I 4.52927 2.97945I
17
IV. I
u
4
= hb + u, a
2
+ au + 4u
2
6u + 4, u
3
u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
12
=
a
u
a
3
=
au + 1
u
2
a
2
=
u
2
a + au + a + 1
au u
2
a
a
1
=
au + 2u
2
+ 2a 1
u
2
a + au + u
2
+ a
a
9
=
u
u
a
8
=
u
2
+ 1
u
2
a
7
=
u
2
a a + u 2
au + a + u
a
11
=
u
2
1
u
2
+ u + 1
a
6
=
u
2
a + au + a + 2u 1
u
2
a au u
2
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 7u
5
+ 30u
4
+ 79u
3
+ 120u
2
+ 112u + 64
c
2
, c
5
, c
7
u
6
3u
5
+ 8u
4
11u
3
+ 16u
2
12u + 8
c
3
(u
3
+ u
2
1)
2
c
4
, c
9
(u
3
u
2
+ 1)
2
c
6
, c
11
u
6
5u
4
4u
3
+ 6u
2
+ 12u + 7
c
8
(u
3
3u
2
+ 2u + 1)
2
c
10
(u
3
u
2
+ 2u 1)
2
c
12
u
6
4u
5
+ 9u
4
18u
3
+ 34u
2
34u + 19
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
+ 11y
5
+ 34y
4
481y
3
+ 544y
2
+ 2816y + 4096
c
2
, c
5
, c
7
y
6
+ 7y
5
+ 30y
4
+ 79y
3
+ 120y
2
+ 112y + 64
c
3
, c
4
, c
9
(y
3
y
2
+ 2y 1)
2
c
6
, c
11
y
6
10y
5
+ 37y
4
62y
3
+ 62y
2
60y + 49
c
8
(y
3
5y
2
+ 10y 1)
2
c
10
(y
3
+ 3y
2
+ 2y 1)
2
c
12
y
6
+ 2y
5
+ 5y
4
+ 54y
3
+ 274y
2
+ 136y + 361
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.176340 0.079183I
b = 0.877439 0.744862I
4.93480 2.00000
u = 0.877439 + 0.744862I
a = 0.298897 0.665679I
b = 0.877439 0.744862I
4.93480 2.00000
u = 0.877439 0.744862I
a = 1.176340 + 0.079183I
b = 0.877439 + 0.744862I
4.93480 2.00000
u = 0.877439 0.744862I
a = 0.298897 + 0.665679I
b = 0.877439 + 0.744862I
4.93480 2.00000
u = 0.754878
a = 0.37744 + 3.26591I
b = 0.754878
4.93480 2.00000
u = 0.754878
a = 0.37744 3.26591I
b = 0.754878
4.93480 2.00000
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 7u
5
+ 30u
4
+ 79u
3
+ 120u
2
+ 112u + 64)
· (u
12
+ 20u
11
+ ··· 972u + 729)(u
18
18u
17
+ ··· 11u + 1)
· (u
24
+ 40u
23
+ ··· 13u + 1)
c
2
, c
7
(u
6
3u
5
+ ··· 12u + 8)(u
12
+ 4u
11
+ ··· + 108u + 27)
· (u
18
+ 9u
16
+ ··· u + 1)(u
24
+ 20u
22
+ ··· 3u + 1)
c
3
((u
3
+ u
2
1)
6
)(u
18
+ 7u
17
+ ··· 8u
2
+ 1)(u
24
12u
23
+ ··· 80u + 8)
c
4
((u
3
u
2
+ 1)
6
)(u
18
5u
16
+ ··· 3u
2
+ 1)(u
24
+ 7u
23
+ ··· + 44u + 8)
c
5
(u
6
3u
5
+ ··· 12u + 8)(u
12
+ 4u
11
+ ··· + 108u + 27)
· (u
18
+ 9u
16
+ ··· + u + 1)(u
24
+ 20u
22
+ ··· 3u + 1)
c
6
(u
6
5u
4
4u
3
+ 6u
2
+ 12u + 7)(u
12
+ 3u
11
+ ··· + 8u + 8)
· (u
18
+ u
17
+ ··· + 2u + 1)(u
24
+ u
23
+ ··· 2u + 1)
c
8
((u
3
3u
2
+ 2u + 1)
6
)(u
18
+ 3u
16
+ ··· 3u
2
+ 1)
· (u
24
+ 21u
23
+ ··· + 6588u + 1192)
c
9
((u
3
u
2
+ 1)
6
)(u
18
5u
16
+ ··· 3u
2
+ 1)(u
24
+ 7u
23
+ ··· + 44u + 8)
c
10
((u
3
u
2
+ 2u 1)
6
)(u
18
10u
17
+ ··· 6u + 1)
· (u
24
11u
23
+ ··· 16u + 64)
c
11
(u
6
5u
4
4u
3
+ 6u
2
+ 12u + 7)(u
12
+ 3u
11
+ ··· + 8u + 8)
· (u
18
u
17
+ ··· 2u + 1)(u
24
+ u
23
+ ··· 2u + 1)
c
12
(u
6
4u
5
+ ··· 34u + 19)(u
12
+ 5u
11
+ ··· 52u + 8)
· (u
18
+ u
17
+ ··· 4u
2
+ 1)(u
24
u
23
+ ··· 146u + 481)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ 11y
5
+ 34y
4
481y
3
+ 544y
2
+ 2816y + 4096)
· (y
12
60y
11
+ ··· + 157464y + 531441)(y
18
34y
17
+ ··· + 15y + 1)
· (y
24
132y
23
+ ··· 117y + 1)
c
2
, c
5
, c
7
(y
6
+ 7y
5
+ 30y
4
+ 79y
3
+ 120y
2
+ 112y + 64)
· (y
12
+ 20y
11
+ ··· 972y + 729)(y
18
+ 18y
17
+ ··· + 11y + 1)
· (y
24
+ 40y
23
+ ··· 13y + 1)
c
3
((y
3
y
2
+ 2y 1)
6
)(y
18
+ 3y
17
+ ··· 16y + 1)
· (y
24
+ 2y
23
+ ··· 544y + 64)
c
4
, c
9
((y
3
y
2
+ 2y 1)
6
)(y
18
10y
17
+ ··· 6y + 1)
· (y
24
11y
23
+ ··· 16y + 64)
c
6
, c
11
(y
6
10y
5
+ 37y
4
62y
3
+ 62y
2
60y + 49)
· (y
12
+ y
11
+ ··· + 288y + 64)(y
18
7y
17
+ ··· 10y + 1)
· (y
24
33y
23
+ ··· + 38y + 1)
c
8
((y
3
5y
2
+ 10y 1)
6
)(y
18
+ 6y
17
+ ··· 6y + 1)
· (y
24
+ y
23
+ ··· + 2294768y + 1420864)
c
10
((y
3
+ 3y
2
+ 2y 1)
6
)(y
18
+ 2y
17
+ ··· 2y + 1)
· (y
24
+ 5y
23
+ ··· 29952y + 4096)
c
12
(y
6
+ 2y
5
+ 5y
4
+ 54y
3
+ 274y
2
+ 136y + 361)
· (y
12
+ 37y
11
+ ··· 1360y + 64)(y
18
+ 19y
17
+ ··· 8y + 1)
· (y
24
+ 57y
23
+ ··· 2861140y + 231361)
23