12n
0399
(K12n
0399
)
A knot diagram
1
Linearized knot diagam
3 6 12 10 9 2 12 3 11 5 7 9
Solving Sequence
2,7
6 3
1,9
5 8 12 4 11 10
c
6
c
2
c
1
c
5
c
8
c
12
c
3
c
11
c
10
c
4
, c
7
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.37109 × 10
80
u
57
1.84051 × 10
81
u
56
+ ··· + 5.53954 × 10
81
b 2.72456 × 10
81
,
1.01217 × 10
81
u
57
+ 2.67010 × 10
81
u
56
+ ··· + 5.53954 × 10
81
a + 9.31498 × 10
81
, u
58
+ 2u
57
+ ··· 27u + 19i
I
u
2
= hu
17
+ 5u
15
+ ··· + b 4, u
17
u
16
+ ··· + a + 2, u
18
+ u
17
+ ··· + u + 1i
* 2 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.37 × 10
80
u
57
1.84 × 10
81
u
56
+ · · · + 5.54 × 10
81
b 2.72 ×
10
81
, 1.01 × 10
81
u
57
+ 2.67 × 10
81
u
56
+ · · · + 5.54 × 10
81
a + 9.31 ×
10
81
, u
58
+ 2u
57
+ · · · 27u + 19i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
0.182717u
57
0.482007u
56
+ ··· 0.595250u 1.68154
0.115011u
57
+ 0.332249u
56
+ ··· 5.79553u + 0.491839
a
5
=
0.215408u
57
+ 0.599279u
56
+ ··· 5.51146u + 2.78906
0.0682106u
57
+ 0.107706u
56
+ ··· + 9.01545u 0.0425585
a
8
=
0.0965279u
57
0.205612u
56
+ ··· 0.632369u + 0.510681
0.0864318u
57
+ 0.243238u
56
+ ··· 4.66179u + 0.707748
a
12
=
0.184306u
57
0.235116u
56
+ ··· 7.66825u + 2.57745
0.0327982u
57
+ 0.0595320u
56
+ ··· 3.43943u + 4.22235
a
4
=
0.0364741u
57
+ 0.0502724u
56
+ ··· + 0.960488u + 0.303105
0.115380u
57
0.144572u
56
+ ··· 4.33270u + 3.07815
a
11
=
0.151508u
57
0.294648u
56
+ ··· 4.22882u 1.64490
0.0327982u
57
+ 0.0595320u
56
+ ··· 3.43943u + 4.22235
a
10
=
0.261480u
57
0.760630u
56
+ ··· + 1.64155u 3.31612
0.0235570u
57
+ 0.113579u
56
+ ··· 7.62175u + 0.966758
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0203392u
57
0.188722u
56
+ ··· 30.5602u 6.13312
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
58
+ 40u
57
+ ··· 3009u + 361
c
2
, c
6
u
58
2u
57
+ ··· + 27u + 19
c
3
u
58
6u
57
+ ··· + 9863u + 10043
c
4
, c
10
u
58
u
57
+ ··· 6u + 19
c
5
u
58
+ 30u
56
+ ··· 6099u + 2888
c
7
, c
11
u
58
3u
57
+ ··· + 12u + 1
c
8
u
58
u
57
+ ··· + 958u + 751
c
9
u
58
+ 33u
57
+ ··· + 3228u + 361
c
12
u
58
+ 3u
57
+ ··· + 113424u + 119344
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
58
32y
57
+ ··· 18457409y + 130321
c
2
, c
6
y
58
+ 40y
57
+ ··· 3009y + 361
c
3
y
58
72y
57
+ ··· 2262348709y + 100861849
c
4
, c
10
y
58
33y
57
+ ··· 3228y + 361
c
5
y
58
+ 60y
57
+ ··· 6995097y + 8340544
c
7
, c
11
y
58
5y
57
+ ··· 26y + 1
c
8
y
58
+ 73y
57
+ ··· + 20589374y + 564001
c
9
y
58
9y
57
+ ··· 449164y + 130321
c
12
y
58
+ 75y
57
+ ··· 34418530176y + 14242990336
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.224515 + 1.006340I
a = 0.33066 2.04253I
b = 0.249830 + 0.006141I
2.43095 + 5.91497I 2.38973 6.67697I
u = 0.224515 1.006340I
a = 0.33066 + 2.04253I
b = 0.249830 0.006141I
2.43095 5.91497I 2.38973 + 6.67697I
u = 0.030766 + 0.962352I
a = 0.06436 + 1.97929I
b = 0.746000 0.276999I
0.1036930 + 0.0767330I 2.65103 0.60139I
u = 0.030766 0.962352I
a = 0.06436 1.97929I
b = 0.746000 + 0.276999I
0.1036930 0.0767330I 2.65103 + 0.60139I
u = 1.042920 + 0.032836I
a = 0.259112 + 0.104770I
b = 0.68966 1.30617I
5.37599 3.80435I 2.65869 + 2.19609I
u = 1.042920 0.032836I
a = 0.259112 0.104770I
b = 0.68966 + 1.30617I
5.37599 + 3.80435I 2.65869 2.19609I
u = 1.058870 + 0.161540I
a = 0.227004 + 0.100851I
b = 0.095391 1.169420I
9.58690 + 0.42947I 1.63258 0.54397I
u = 1.058870 0.161540I
a = 0.227004 0.100851I
b = 0.095391 + 1.169420I
9.58690 0.42947I 1.63258 + 0.54397I
u = 0.460132 + 0.780804I
a = 1.310830 + 0.501042I
b = 0.519539 0.203889I
0.07479 1.89327I 0.15136 + 5.96513I
u = 0.460132 0.780804I
a = 1.310830 0.501042I
b = 0.519539 + 0.203889I
0.07479 + 1.89327I 0.15136 5.96513I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.105990 + 1.102970I
a = 0.810233 + 0.184658I
b = 1.80171 0.04967I
6.41348 + 2.03025I 3.15648 3.60193I
u = 0.105990 1.102970I
a = 0.810233 0.184658I
b = 1.80171 + 0.04967I
6.41348 2.03025I 3.15648 + 3.60193I
u = 0.561429 + 0.692143I
a = 0.524254 + 0.648250I
b = 1.135660 0.415124I
2.43289 + 1.05533I 3.94947 + 2.91901I
u = 0.561429 0.692143I
a = 0.524254 0.648250I
b = 1.135660 + 0.415124I
2.43289 1.05533I 3.94947 2.91901I
u = 0.761038 + 0.814758I
a = 0.300716 + 0.114866I
b = 0.379098 + 0.825252I
1.83532 4.45936I 2.00000 + 6.82517I
u = 0.761038 0.814758I
a = 0.300716 0.114866I
b = 0.379098 0.825252I
1.83532 + 4.45936I 2.00000 6.82517I
u = 0.319860 + 0.802100I
a = 1.121730 0.655570I
b = 0.060021 0.162688I
0.29143 1.82126I 1.27978 + 4.93251I
u = 0.319860 0.802100I
a = 1.121730 + 0.655570I
b = 0.060021 + 0.162688I
0.29143 + 1.82126I 1.27978 4.93251I
u = 1.172040 + 0.071525I
a = 0.303741 + 0.232489I
b = 0.85630 + 1.92853I
8.63085 + 8.82241I 0. 5.23324I
u = 1.172040 0.071525I
a = 0.303741 0.232489I
b = 0.85630 1.92853I
8.63085 8.82241I 0. + 5.23324I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.445581 + 1.103690I
a = 0.70109 1.44721I
b = 0.848763 + 0.587413I
4.43655 + 6.03980I 0
u = 0.445581 1.103690I
a = 0.70109 + 1.44721I
b = 0.848763 0.587413I
4.43655 6.03980I 0
u = 0.260261 + 1.162950I
a = 0.04311 1.85420I
b = 0.45658 + 1.34791I
2.05268 3.33538I 0
u = 0.260261 1.162950I
a = 0.04311 + 1.85420I
b = 0.45658 1.34791I
2.05268 + 3.33538I 0
u = 0.779441 + 0.907575I
a = 0.834365 0.262759I
b = 0.075515 0.925892I
1.58419 1.34680I 0
u = 0.779441 0.907575I
a = 0.834365 + 0.262759I
b = 0.075515 + 0.925892I
1.58419 + 1.34680I 0
u = 0.058218 + 1.207240I
a = 0.39450 1.84866I
b = 1.02773 + 1.06905I
4.57241 4.54424I 0
u = 0.058218 1.207240I
a = 0.39450 + 1.84866I
b = 1.02773 1.06905I
4.57241 + 4.54424I 0
u = 0.094987 + 1.212170I
a = 0.79398 + 1.46987I
b = 0.90589 1.47169I
6.32920 + 0.20167I 0
u = 0.094987 1.212170I
a = 0.79398 1.46987I
b = 0.90589 + 1.47169I
6.32920 0.20167I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.285200 + 0.724064I
a = 1.77053 0.53984I
b = 0.832820 0.313787I
5.14004 0.53773I 4.31053 1.96229I
u = 0.285200 0.724064I
a = 1.77053 + 0.53984I
b = 0.832820 + 0.313787I
5.14004 + 0.53773I 4.31053 + 1.96229I
u = 0.675255 + 1.080190I
a = 0.729932 + 0.807985I
b = 1.32166 + 0.86386I
1.20589 + 3.92566I 0
u = 0.675255 1.080190I
a = 0.729932 0.807985I
b = 1.32166 0.86386I
1.20589 3.92566I 0
u = 0.289778 + 1.251810I
a = 0.14194 + 2.38715I
b = 0.83641 2.21441I
4.57902 + 8.23825I 0
u = 0.289778 1.251810I
a = 0.14194 2.38715I
b = 0.83641 + 2.21441I
4.57902 8.23825I 0
u = 0.502231 + 0.501611I
a = 1.90990 + 0.84716I
b = 0.772295 + 0.298643I
1.23139 2.94700I 3.45016 + 2.06974I
u = 0.502231 0.501611I
a = 1.90990 0.84716I
b = 0.772295 0.298643I
1.23139 + 2.94700I 3.45016 2.06974I
u = 0.614872 + 0.246619I
a = 0.986845 0.142152I
b = 0.655283 0.683736I
1.98798 1.92106I 0.449585 + 0.437051I
u = 0.614872 0.246619I
a = 0.986845 + 0.142152I
b = 0.655283 + 0.683736I
1.98798 + 1.92106I 0.449585 0.437051I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.49464 + 1.35074I
a = 0.934249 + 1.006260I
b = 0.33871 1.44275I
9.72891 + 1.63245I 0
u = 0.49464 1.35074I
a = 0.934249 1.006260I
b = 0.33871 + 1.44275I
9.72891 1.63245I 0
u = 0.53075 + 1.33985I
a = 0.49560 1.71753I
b = 0.97811 + 1.43333I
9.45215 + 9.41732I 0
u = 0.53075 1.33985I
a = 0.49560 + 1.71753I
b = 0.97811 1.43333I
9.45215 9.41732I 0
u = 0.42609 + 1.38517I
a = 0.42731 + 1.44092I
b = 0.22698 1.46052I
14.5523 4.7341I 0
u = 0.42609 1.38517I
a = 0.42731 1.44092I
b = 0.22698 + 1.46052I
14.5523 + 4.7341I 0
u = 0.60852 + 1.32238I
a = 0.779860 1.133270I
b = 0.463346 + 1.215890I
13.1569 6.4397I 0
u = 0.60852 1.32238I
a = 0.779860 + 1.133270I
b = 0.463346 1.215890I
13.1569 + 6.4397I 0
u = 0.07302 + 1.47166I
a = 1.72282 + 0.30872I
b = 3.24074 0.70291I
7.81481 1.27231I 0
u = 0.07302 1.47166I
a = 1.72282 0.30872I
b = 3.24074 + 0.70291I
7.81481 + 1.27231I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.58987 + 1.38053I
a = 0.65521 + 1.77053I
b = 1.32308 1.85496I
12.7498 15.0579I 0
u = 0.58987 1.38053I
a = 0.65521 1.77053I
b = 1.32308 + 1.85496I
12.7498 + 15.0579I 0
u = 0.457528 + 0.032139I
a = 0.782322 0.083764I
b = 0.563932 + 1.221260I
0.84917 5.20541I 3.94046 + 7.52664I
u = 0.457528 0.032139I
a = 0.782322 + 0.083764I
b = 0.563932 1.221260I
0.84917 + 5.20541I 3.94046 7.52664I
u = 0.49829 + 1.47862I
a = 1.10880 1.15312I
b = 0.40920 + 2.41229I
13.61300 + 2.78020I 0
u = 0.49829 1.47862I
a = 1.10880 + 1.15312I
b = 0.40920 2.41229I
13.61300 2.78020I 0
u = 0.375315 + 0.010677I
a = 0.974844 0.096938I
b = 0.607935 + 0.541636I
1.209710 0.655189I 7.50833 + 2.44087I
u = 0.375315 0.010677I
a = 0.974844 + 0.096938I
b = 0.607935 0.541636I
1.209710 + 0.655189I 7.50833 2.44087I
10
II.
I
u
2
= hu
17
+ 5u
15
+ · · · + b 4, u
17
u
16
+ · · · + a + 2, u
18
+ u
17
+ · · · + u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
17
+ u
16
+ ··· + u 2
u
17
5u
15
+ ··· 2u + 4
a
5
=
3u
17
4u
16
+ ··· u 6
3u
17
2u
16
+ ··· 8u 1
a
8
=
u
17
+ u
16
+ ··· + u 1
u
17
5u
15
+ ··· 2u + 5
a
12
=
u
17
5u
16
+ ··· 8u 5
u
17
+ u
16
+ ··· + 7u + 1
a
4
=
4u
17
+ 11u
16
+ ··· + 20u + 12
u
17
u
16
+ ··· 7u 1
a
11
=
2u
17
6u
16
+ ··· 15u 6
u
17
+ u
16
+ ··· + 7u + 1
a
10
=
2u
17
+ 3u
16
+ ··· 5u + 5
3u
17
+ 2u
16
+ ··· + 8u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18u
17
+ 20u
16
+ 102u
15
+ 96u
14
+ 289u
13
+ 242u
12
+ 565u
11
+
422u
10
+ 770u
9
+ 505u
8
+ 760u
7
+ 449u
6
+ 540u
5
+ 268u
4
+ 235u
3
+ 107u
2
+ 48u + 17
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
18
11u
17
+ ··· 15u + 1
c
2
u
18
u
17
+ ··· u + 1
c
3
u
18
+ 7u
17
+ ··· + 7u + 1
c
4
u
18
5u
16
+ ··· 4u
2
+ 1
c
5
u
18
+ 3u
17
+ ··· 2u
2
+ 1
c
6
u
18
+ u
17
+ ··· + u + 1
c
7
u
18
2u
17
+ ··· 2u + 1
c
8
u
18
+ 10u
16
+ ··· + 9u
2
+ 1
c
9
u
18
10u
17
+ ··· 8u + 1
c
10
u
18
5u
16
+ ··· 4u
2
+ 1
c
11
u
18
+ 2u
17
+ ··· + 2u + 1
c
12
u
18
+ 2u
17
+ ··· + 2u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 3y
17
+ ··· 21y + 1
c
2
, c
6
y
18
+ 11y
17
+ ··· + 15y + 1
c
3
y
18
y
17
+ ··· + 7y + 1
c
4
, c
10
y
18
10y
17
+ ··· 8y + 1
c
5
y
18
+ 15y
17
+ ··· 4y + 1
c
7
, c
11
y
18
10y
17
+ ··· 6y + 1
c
8
y
18
+ 20y
17
+ ··· + 18y + 1
c
9
y
18
+ 2y
17
+ ··· + 8y + 1
c
12
y
18
6y
17
+ ··· 10y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.663427 + 0.812489I
a = 0.1067230 + 0.0051625I
b = 0.687075 0.298572I
2.56473 + 2.09263I 6.27509 4.65916I
u = 0.663427 0.812489I
a = 0.1067230 0.0051625I
b = 0.687075 + 0.298572I
2.56473 2.09263I 6.27509 + 4.65916I
u = 0.329171 + 0.866966I
a = 1.23220 + 1.42346I
b = 0.738933 + 0.005475I
0.76853 + 1.42826I 8.35176 2.38264I
u = 0.329171 0.866966I
a = 1.23220 1.42346I
b = 0.738933 0.005475I
0.76853 1.42826I 8.35176 + 2.38264I
u = 0.767733 + 0.810239I
a = 0.224536 + 0.562717I
b = 0.019830 + 0.688255I
0.91380 6.14020I 1.38743 + 7.79716I
u = 0.767733 0.810239I
a = 0.224536 0.562717I
b = 0.019830 0.688255I
0.91380 + 6.14020I 1.38743 7.79716I
u = 0.308872 + 1.108840I
a = 0.40762 2.27471I
b = 0.723271 + 0.879058I
3.46207 6.59532I 0.29237 + 8.93365I
u = 0.308872 1.108840I
a = 0.40762 + 2.27471I
b = 0.723271 0.879058I
3.46207 + 6.59532I 0.29237 8.93365I
u = 0.676502 + 0.985205I
a = 0.784868 + 0.696433I
b = 0.781651 + 0.705840I
2.01899 + 3.08515I 4.31503 1.55560I
u = 0.676502 0.985205I
a = 0.784868 0.696433I
b = 0.781651 0.705840I
2.01899 3.08515I 4.31503 + 1.55560I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.777605 + 0.946138I
a = 1.105390 + 0.065108I
b = 0.299715 0.762984I
0.504540 + 0.309567I 0.80740 1.43142I
u = 0.777605 0.946138I
a = 1.105390 0.065108I
b = 0.299715 + 0.762984I
0.504540 0.309567I 0.80740 + 1.43142I
u = 0.236516 + 0.684902I
a = 1.95856 0.66471I
b = 0.452798 0.606876I
1.79616 + 4.18945I 0.25895 4.46563I
u = 0.236516 0.684902I
a = 1.95856 + 0.66471I
b = 0.452798 + 0.606876I
1.79616 4.18945I 0.25895 + 4.46563I
u = 0.043389 + 1.388640I
a = 1.70876 0.48185I
b = 2.96850 + 0.74047I
8.29244 + 1.00000I 10.45781 + 0.99918I
u = 0.043389 1.388640I
a = 1.70876 + 0.48185I
b = 2.96850 0.74047I
8.29244 1.00000I 10.45781 0.99918I
u = 0.034984 + 0.541926I
a = 2.20094 0.05979I
b = 1.095690 0.356910I
4.73446 1.37974I 0.98722 + 4.89065I
u = 0.034984 0.541926I
a = 2.20094 + 0.05979I
b = 1.095690 + 0.356910I
4.73446 + 1.37974I 0.98722 4.89065I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
11u
17
+ ··· 15u + 1)(u
58
+ 40u
57
+ ··· 3009u + 361)
c
2
(u
18
u
17
+ ··· u + 1)(u
58
2u
57
+ ··· + 27u + 19)
c
3
(u
18
+ 7u
17
+ ··· + 7u + 1)(u
58
6u
57
+ ··· + 9863u + 10043)
c
4
(u
18
5u
16
+ ··· 4u
2
+ 1)(u
58
u
57
+ ··· 6u + 19)
c
5
(u
18
+ 3u
17
+ ··· 2u
2
+ 1)(u
58
+ 30u
56
+ ··· 6099u + 2888)
c
6
(u
18
+ u
17
+ ··· + u + 1)(u
58
2u
57
+ ··· + 27u + 19)
c
7
(u
18
2u
17
+ ··· 2u + 1)(u
58
3u
57
+ ··· + 12u + 1)
c
8
(u
18
+ 10u
16
+ ··· + 9u
2
+ 1)(u
58
u
57
+ ··· + 958u + 751)
c
9
(u
18
10u
17
+ ··· 8u + 1)(u
58
+ 33u
57
+ ··· + 3228u + 361)
c
10
(u
18
5u
16
+ ··· 4u
2
+ 1)(u
58
u
57
+ ··· 6u + 19)
c
11
(u
18
+ 2u
17
+ ··· + 2u + 1)(u
58
3u
57
+ ··· + 12u + 1)
c
12
(u
18
+ 2u
17
+ ··· + 2u + 1)(u
58
+ 3u
57
+ ··· + 113424u + 119344)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
18
+ 3y
17
+ ··· 21y + 1)
· (y
58
32y
57
+ ··· 18457409y + 130321)
c
2
, c
6
(y
18
+ 11y
17
+ ··· + 15y + 1)(y
58
+ 40y
57
+ ··· 3009y + 361)
c
3
(y
18
y
17
+ ··· + 7y + 1)
· (y
58
72y
57
+ ··· 2262348709y + 100861849)
c
4
, c
10
(y
18
10y
17
+ ··· 8y + 1)(y
58
33y
57
+ ··· 3228y + 361)
c
5
(y
18
+ 15y
17
+ ··· 4y + 1)
· (y
58
+ 60y
57
+ ··· 6995097y + 8340544)
c
7
, c
11
(y
18
10y
17
+ ··· 6y + 1)(y
58
5y
57
+ ··· 26y + 1)
c
8
(y
18
+ 20y
17
+ ··· + 18y + 1)
· (y
58
+ 73y
57
+ ··· + 20589374y + 564001)
c
9
(y
18
+ 2y
17
+ ··· + 8y + 1)(y
58
9y
57
+ ··· 449164y + 130321)
c
12
(y
18
6y
17
+ ··· 10y + 1)
· (y
58
+ 75y
57
+ ··· 34418530176y + 14242990336)
19