12n
0400
(K12n
0400
)
A knot diagram
1
Linearized knot diagam
3 5 7 10 2 12 1 5 4 9 6 4
Solving Sequence
3,7 4,10
5 2 1 9 11 8 12 6
c
3
c
4
c
2
c
1
c
9
c
10
c
8
c
12
c
6
c
5
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h8.20503 × 10
120
u
66
4.37537 × 10
120
u
65
+ ··· + 4.05645 × 10
120
b + 2.44731 × 10
122
,
2.09871 × 10
122
u
66
+ 3.37585 × 10
122
u
65
+ ··· + 1.09524 × 10
122
a + 8.19876 × 10
123
,
u
67
u
66
+ ··· 36u + 27i
I
u
2
= h−162u
19
529u
18
+ ··· + 67b 916, 569u
19
+ 427u
18
+ ··· + 67a + 270,
u
20
+ 6u
18
+ ··· + 9u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h8.21 × 10
120
u
66
4.38 × 10
120
u
65
+ · · · + 4.06 × 10
120
b + 2.45 ×
10
122
, 2.10 × 10
122
u
66
+ 3.38 × 10
122
u
65
+ · · · + 1.10 × 10
122
a + 8.20 ×
10
123
, u
67
u
66
+ · · · 36u + 27i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
1.91621u
66
3.08229u
65
+ ··· + 218.618u 74.8581
2.02271u
66
+ 1.07862u
65
+ ··· 11.8138u 60.3314
a
5
=
2.42380u
66
3.06485u
65
+ ··· + 134.055u 39.4259
0.382036u
66
0.247634u
65
+ ··· + 12.7110u + 12.3558
a
2
=
1.16559u
66
0.322858u
65
+ ··· + 43.2405u + 26.4451
0.679935u
66
+ 1.62318u
65
+ ··· 157.928u + 68.3586
a
1
=
0.485654u
66
+ 1.30032u
65
+ ··· 114.687u + 94.8037
0.679935u
66
+ 1.62318u
65
+ ··· 157.928u + 68.3586
a
9
=
2.96238u
66
2.76939u
65
+ ··· + 136.716u + 16.9575
2.60117u
66
+ 1.16210u
65
+ ··· + 8.86605u 97.0263
a
11
=
0.246704u
66
+ 0.254410u
65
+ ··· 47.6286u + 20.0839
1.49519u
66
4.45234u
65
+ ··· + 359.216u 165.126
a
8
=
7.22609u
66
7.67941u
65
+ ··· + 408.413u 6.27588
2.34500u
66
1.98279u
65
+ ··· + 82.0421u + 45.1621
a
12
=
0.806636u
66
0.800130u
65
+ ··· + 94.4230u 21.7763
0.623210u
66
+ 2.28266u
65
+ ··· 230.655u + 116.404
a
6
=
3.29459u
66
3.09314u
65
+ ··· + 140.386u + 20.3916
3.12335u
66
+ 2.48303u
65
+ ··· 105.141u 65.0291
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5.74045u
66
+ 2.90861u
65
+ ··· + 127.771u 271.376
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
67
+ 42u
66
+ ··· 24651u 1849
c
2
, c
5
u
67
+ 21u
65
+ ··· + 17u 43
c
3
u
67
+ u
66
+ ··· 36u 27
c
4
, c
9
u
67
+ u
66
+ ··· 20u 19
c
6
, c
11
u
67
u
66
+ ··· 20u 1
c
7
u
67
7u
66
+ ··· + 1902976u 712609
c
8
u
67
+ 6u
66
+ ··· + 57128562u 63140553
c
10
u
67
19u
66
+ ··· + 5796u 361
c
12
u
67
+ 10u
66
+ ··· + 65390u + 26317
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
67
22y
66
+ ··· + 45805077y 3418801
c
2
, c
5
y
67
+ 42y
66
+ ··· 24651y 1849
c
3
y
67
+ 23y
66
+ ··· 28350y 729
c
4
, c
9
y
67
19y
66
+ ··· + 5796y 361
c
6
, c
11
y
67
15y
66
+ ··· + 72y 1
c
7
y
67
23y
66
+ ··· 3886211988072y 507811586881
c
8
y
67
134y
66
+ ··· + 205611754284956160y 3986729433145809
c
10
y
67
+ 69y
66
+ ··· 1190900y 130321
c
12
y
67
+ 14y
66
+ ··· + 48815900848y 692584489
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.020734 + 0.989112I
a = 2.11448 + 0.88607I
b = 1.102020 + 0.046986I
2.56036 3.61015I 4.00000 + 4.59333I
u = 0.020734 0.989112I
a = 2.11448 0.88607I
b = 1.102020 0.046986I
2.56036 + 3.61015I 4.00000 4.59333I
u = 0.397079 + 0.880420I
a = 0.383090 0.299480I
b = 0.722114 + 0.962145I
1.65706 1.20024I 8.71578 + 3.20813I
u = 0.397079 0.880420I
a = 0.383090 + 0.299480I
b = 0.722114 0.962145I
1.65706 + 1.20024I 8.71578 3.20813I
u = 0.560483 + 0.777160I
a = 0.828568 + 0.311770I
b = 0.257750 + 0.242820I
4.00761 + 2.23459I 3.32429 2.42501I
u = 0.560483 0.777160I
a = 0.828568 0.311770I
b = 0.257750 0.242820I
4.00761 2.23459I 3.32429 + 2.42501I
u = 0.285894 + 0.913597I
a = 0.003075 0.408224I
b = 0.173603 + 0.837678I
0.58721 1.40356I 4.00000 + 4.86091I
u = 0.285894 0.913597I
a = 0.003075 + 0.408224I
b = 0.173603 0.837678I
0.58721 + 1.40356I 4.00000 4.86091I
u = 0.569468 + 0.913130I
a = 0.88485 1.73481I
b = 1.71439 + 0.31076I
1.09519 1.96755I 0
u = 0.569468 0.913130I
a = 0.88485 + 1.73481I
b = 1.71439 0.31076I
1.09519 + 1.96755I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.830715 + 0.740572I
a = 0.60001 + 1.63780I
b = 1.098950 + 0.108954I
4.78073 2.36169I 0
u = 0.830715 0.740572I
a = 0.60001 1.63780I
b = 1.098950 0.108954I
4.78073 + 2.36169I 0
u = 0.893443 + 0.696027I
a = 0.391682 + 0.454998I
b = 1.41969 0.16929I
4.31346 3.83468I 0
u = 0.893443 0.696027I
a = 0.391682 0.454998I
b = 1.41969 + 0.16929I
4.31346 + 3.83468I 0
u = 0.853524 + 0.747440I
a = 1.64500 1.97641I
b = 1.43662 2.02594I
0.11681 + 6.19592I 0
u = 0.853524 0.747440I
a = 1.64500 + 1.97641I
b = 1.43662 + 2.02594I
0.11681 6.19592I 0
u = 0.821610 + 0.845291I
a = 0.277124 + 0.508899I
b = 1.66774 1.30196I
8.33360 1.96969I 0
u = 0.821610 0.845291I
a = 0.277124 0.508899I
b = 1.66774 + 1.30196I
8.33360 + 1.96969I 0
u = 0.931514 + 0.724402I
a = 0.167627 0.434622I
b = 1.205880 0.088640I
0.28086 3.26362I 0
u = 0.931514 0.724402I
a = 0.167627 + 0.434622I
b = 1.205880 + 0.088640I
0.28086 + 3.26362I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.846645 + 0.822198I
a = 0.487687 + 0.772794I
b = 0.153694 0.215450I
8.55192 4.73842I 0
u = 0.846645 0.822198I
a = 0.487687 0.772794I
b = 0.153694 + 0.215450I
8.55192 + 4.73842I 0
u = 0.913707 + 0.747374I
a = 0.724192 0.211434I
b = 0.484202 0.589044I
0.81057 5.10480I 0
u = 0.913707 0.747374I
a = 0.724192 + 0.211434I
b = 0.484202 + 0.589044I
0.81057 + 5.10480I 0
u = 0.058759 + 0.809366I
a = 4.53846 0.30110I
b = 2.28712 + 0.27809I
4.36128 4.16936I 12.4339 + 6.8808I
u = 0.058759 0.809366I
a = 4.53846 + 0.30110I
b = 2.28712 0.27809I
4.36128 + 4.16936I 12.4339 6.8808I
u = 0.209111 + 0.767687I
a = 0.071283 1.138760I
b = 0.396327 + 0.485629I
4.86449 + 2.07848I 16.1441 2.2028I
u = 0.209111 0.767687I
a = 0.071283 + 1.138760I
b = 0.396327 0.485629I
4.86449 2.07848I 16.1441 + 2.2028I
u = 0.984841 + 0.718671I
a = 1.176210 + 0.239572I
b = 1.14052 + 2.10734I
0.53842 + 1.84717I 0
u = 0.984841 0.718671I
a = 1.176210 0.239572I
b = 1.14052 2.10734I
0.53842 1.84717I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.791011 + 0.950672I
a = 1.61662 + 1.62965I
b = 1.96254 + 1.09066I
8.00368 + 8.01849I 0
u = 0.791011 0.950672I
a = 1.61662 1.62965I
b = 1.96254 1.09066I
8.00368 8.01849I 0
u = 0.749070 + 0.108534I
a = 0.464143 + 0.806483I
b = 1.087010 + 0.830302I
1.24756 + 2.47949I 1.16218 4.53849I
u = 0.749070 0.108534I
a = 0.464143 0.806483I
b = 1.087010 0.830302I
1.24756 2.47949I 1.16218 + 4.53849I
u = 0.458655 + 1.171940I
a = 1.47345 0.83047I
b = 1.44496 0.40210I
4.31504 + 4.03898I 0
u = 0.458655 1.171940I
a = 1.47345 + 0.83047I
b = 1.44496 + 0.40210I
4.31504 4.03898I 0
u = 0.746334 + 1.015930I
a = 0.363333 + 0.193804I
b = 1.264550 0.463867I
3.92401 3.56783I 0
u = 0.746334 1.015930I
a = 0.363333 0.193804I
b = 1.264550 + 0.463867I
3.92401 + 3.56783I 0
u = 0.801818 + 0.982376I
a = 0.433833 0.506247I
b = 0.265138 0.052591I
8.05703 1.42378I 0
u = 0.801818 0.982376I
a = 0.433833 + 0.506247I
b = 0.265138 + 0.052591I
8.05703 + 1.42378I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.572904 + 1.139750I
a = 0.816949 + 0.121925I
b = 0.49318 + 1.48394I
0.780282 0.975175I 0
u = 0.572904 1.139750I
a = 0.816949 0.121925I
b = 0.49318 1.48394I
0.780282 + 0.975175I 0
u = 1.105290 + 0.681901I
a = 0.518893 + 0.695577I
b = 0.068992 + 0.331381I
9.61789 2.23788I 0
u = 1.105290 0.681901I
a = 0.518893 0.695577I
b = 0.068992 0.331381I
9.61789 + 2.23788I 0
u = 0.529577 + 1.188440I
a = 1.83871 0.54447I
b = 1.34592 1.37777I
1.79223 7.30523I 0
u = 0.529577 1.188440I
a = 1.83871 + 0.54447I
b = 1.34592 + 1.37777I
1.79223 + 7.30523I 0
u = 0.777256 + 1.057710I
a = 0.98138 + 1.32398I
b = 1.65665 + 0.10271I
3.20942 + 10.04150I 0
u = 0.777256 1.057710I
a = 0.98138 1.32398I
b = 1.65665 0.10271I
3.20942 10.04150I 0
u = 0.123671 + 0.652554I
a = 1.108600 0.254962I
b = 1.137750 0.541468I
3.71168 + 4.46923I 9.9645 11.0760I
u = 0.123671 0.652554I
a = 1.108600 + 0.254962I
b = 1.137750 + 0.541468I
3.71168 4.46923I 9.9645 + 11.0760I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.030964 + 0.662671I
a = 3.98163 + 2.37558I
b = 0.85724 1.52082I
4.35373 1.34213I 11.11045 1.66726I
u = 0.030964 0.662671I
a = 3.98163 2.37558I
b = 0.85724 + 1.52082I
4.35373 + 1.34213I 11.11045 + 1.66726I
u = 0.050606 + 0.651811I
a = 0.902429 + 0.451016I
b = 0.573558 + 0.775451I
4.00181 + 3.70212I 13.57429 0.10210I
u = 0.050606 0.651811I
a = 0.902429 0.451016I
b = 0.573558 0.775451I
4.00181 3.70212I 13.57429 + 0.10210I
u = 1.204890 + 0.695342I
a = 0.432216 + 0.391136I
b = 2.16038 1.14469I
8.45230 + 8.76364I 0
u = 1.204890 0.695342I
a = 0.432216 0.391136I
b = 2.16038 + 1.14469I
8.45230 8.76364I 0
u = 0.594726
a = 0.215660
b = 0.911050
1.23122 8.43390
u = 0.209731 + 1.392820I
a = 1.31171 0.61402I
b = 1.73733 + 0.84785I
3.27062 2.27476I 0
u = 0.209731 1.392820I
a = 1.31171 + 0.61402I
b = 1.73733 0.84785I
3.27062 + 2.27476I 0
u = 0.81844 + 1.15419I
a = 0.273730 0.330386I
b = 0.289304 0.329456I
8.05820 + 9.16868I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.81844 1.15419I
a = 0.273730 + 0.330386I
b = 0.289304 + 0.329456I
8.05820 9.16868I 0
u = 0.86062 + 1.18663I
a = 1.45137 + 1.13375I
b = 2.16489 + 1.35997I
6.8030 16.0998I 0
u = 0.86062 1.18663I
a = 1.45137 1.13375I
b = 2.16489 1.35997I
6.8030 + 16.0998I 0
u = 0.60438 + 1.49192I
a = 1.48378 0.45493I
b = 2.45741 1.34669I
3.02134 + 5.22680I 0
u = 0.60438 1.49192I
a = 1.48378 + 0.45493I
b = 2.45741 + 1.34669I
3.02134 5.22680I 0
u = 0.083417 + 0.315334I
a = 4.93779 + 3.20489I
b = 0.289054 + 0.647459I
1.75204 + 2.60727I 2.01169 + 0.16316I
u = 0.083417 0.315334I
a = 4.93779 3.20489I
b = 0.289054 0.647459I
1.75204 2.60727I 2.01169 0.16316I
11
II. I
u
2
= h−162u
19
529u
18
+ · · · + 67b 916, 569u
19
+ 427u
18
+ · · · +
67a + 270, u
20
+ 6u
18
+ · · · + 9u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
10
=
8.49254u
19
6.37313u
18
+ ··· + 23.1194u 4.02985
2.41791u
19
+ 7.89552u
18
+ ··· + 15.3134u + 13.6716
a
5
=
1.79104u
19
+ 20.4478u
18
+ ··· 1.34328u + 39.8358
8.91045u
19
3.52239u
18
+ ··· 12.4328u + 2.35821
a
2
=
8.11940u
19
+ 1.97015u
18
+ ··· + 40.0896u + 14.4776
13.3881u
19
+ 4.40299u
18
+ ··· + 28.7910u + 0.552239
a
1
=
21.5075u
19
+ 6.37313u
18
+ ··· + 68.8806u + 15.0299
13.3881u
19
+ 4.40299u
18
+ ··· + 28.7910u + 0.552239
a
9
=
2.41791u
19
8.10448u
18
+ ··· 0.686567u 11.3284
2.85075u
19
+ 7.53731u
18
+ ··· + 21.3881u + 15.4030
a
11
=
22.1045u
19
3.77612u
18
+ ··· + 24.3284u 5.58209
8u
19
+ 11u
18
+ ··· + 43u + 18
a
8
=
28.8955u
19
+ 2.77612u
18
+ ··· + 12.6716u 25.4179
5.37313u
19
4.34328u
18
+ ··· + 7.02985u 21.5075
a
12
=
3.77612u
19
+ 0.805970u
18
+ ··· + 18.5821u + 8.10448
19.0299u
19
+ 6.49254u
18
+ ··· + 46.5224u + 6.11940
a
6
=
5.32836u
19
+ 1.41791u
18
+ ··· 13.2537u 6.68657
9.10448u
19
2.22388u
18
+ ··· 13.3284u 1.41791
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2549
67
u
19
+
2495
67
u
18
+ ··· +
11811
67
u +
7516
67
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
20
11u
19
+ ··· 15u + 1
c
2
u
20
+ u
19
+ ··· + u + 1
c
3
u
20
+ 6u
18
+ ··· + 9u
2
+ 1
c
4
u
20
5u
18
+ ··· 6u
2
+ 1
c
5
u
20
u
19
+ ··· u + 1
c
6
u
20
+ 2u
19
+ ··· 4u
2
+ 1
c
7
u
20
+ 2u
19
+ ··· 2u
2
+ 1
c
8
u
20
3u
19
+ ··· 10u
2
+ 1
c
9
u
20
5u
18
+ ··· 6u
2
+ 1
c
10
u
20
10u
19
+ ··· 12u + 1
c
11
u
20
2u
19
+ ··· 4u
2
+ 1
c
12
u
20
3u
19
+ ··· + 4u + 1
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 7y
19
+ ··· 13y + 1
c
2
, c
5
y
20
+ 11y
19
+ ··· + 15y + 1
c
3
y
20
+ 12y
19
+ ··· + 18y + 1
c
4
, c
9
y
20
10y
19
+ ··· 12y + 1
c
6
, c
11
y
20
14y
19
+ ··· 8y + 1
c
7
y
20
+ 18y
19
+ ··· 4y + 1
c
8
y
20
25y
19
+ ··· 20y + 1
c
10
y
20
+ 10y
19
+ ··· + 4y + 1
c
12
y
20
17y
19
+ ··· + 4y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.355345 + 1.025280I
a = 1.36470 1.34565I
b = 1.176260 + 0.757366I
5.09233 + 0.56778I 8.69401 1.53858I
u = 0.355345 1.025280I
a = 1.36470 + 1.34565I
b = 1.176260 0.757366I
5.09233 0.56778I 8.69401 + 1.53858I
u = 0.338576 + 1.132500I
a = 2.28130 0.58160I
b = 2.06551 0.61176I
5.46617 6.02563I 11.16031 + 7.36754I
u = 0.338576 1.132500I
a = 2.28130 + 0.58160I
b = 2.06551 + 0.61176I
5.46617 + 6.02563I 11.16031 7.36754I
u = 0.710578 + 0.966405I
a = 1.52937 0.46414I
b = 0.71185 + 2.55057I
1.77651 + 0.66802I 11.11874 + 1.21947I
u = 0.710578 0.966405I
a = 1.52937 + 0.46414I
b = 0.71185 2.55057I
1.77651 0.66802I 11.11874 1.21947I
u = 0.317333 + 0.724179I
a = 0.75822 + 1.64326I
b = 0.182533 0.634494I
3.96590 + 2.30760I 5.67872 4.88992I
u = 0.317333 0.724179I
a = 0.75822 1.64326I
b = 0.182533 + 0.634494I
3.96590 2.30760I 5.67872 + 4.88992I
u = 0.117386 + 0.721837I
a = 3.36707 + 0.83360I
b = 0.704452 0.220228I
1.23001 + 2.92216I 9.81470 5.41691I
u = 0.117386 0.721837I
a = 3.36707 0.83360I
b = 0.704452 + 0.220228I
1.23001 2.92216I 9.81470 + 5.41691I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.098310 + 0.689577I
a = 0.329509 0.485063I
b = 1.68283 + 0.28491I
0.16878 3.82990I 9.38703 + 7.38381I
u = 1.098310 0.689577I
a = 0.329509 + 0.485063I
b = 1.68283 0.28491I
0.16878 + 3.82990I 9.38703 7.38381I
u = 0.147095 + 0.666021I
a = 1.42462 0.91452I
b = 1.35466 + 0.66805I
3.44748 + 3.77342I 3.92747 0.87310I
u = 0.147095 0.666021I
a = 1.42462 + 0.91452I
b = 1.35466 0.66805I
3.44748 3.77342I 3.92747 + 0.87310I
u = 0.158162 + 0.572450I
a = 1.58765 + 0.59956I
b = 0.532818 + 0.609853I
4.33471 3.83881I 8.13243 + 8.66691I
u = 0.158162 0.572450I
a = 1.58765 0.59956I
b = 0.532818 0.609853I
4.33471 + 3.83881I 8.13243 8.66691I
u = 0.76716 + 1.21117I
a = 1.60777 0.74753I
b = 1.63951 1.98014I
2.21300 + 5.96268I 6.40503 7.23236I
u = 0.76716 1.21117I
a = 1.60777 + 0.74753I
b = 1.63951 + 1.98014I
2.21300 5.96268I 6.40503 + 7.23236I
u = 0.52566 + 1.39685I
a = 1.104330 0.728949I
b = 1.84444 0.04869I
3.17377 3.27114I 7.44642 + 4.46067I
u = 0.52566 1.39685I
a = 1.104330 + 0.728949I
b = 1.84444 + 0.04869I
3.17377 + 3.27114I 7.44642 4.46067I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
11u
19
+ ··· 15u + 1)(u
67
+ 42u
66
+ ··· 24651u 1849)
c
2
(u
20
+ u
19
+ ··· + u + 1)(u
67
+ 21u
65
+ ··· + 17u 43)
c
3
(u
20
+ 6u
18
+ ··· + 9u
2
+ 1)(u
67
+ u
66
+ ··· 36u 27)
c
4
(u
20
5u
18
+ ··· 6u
2
+ 1)(u
67
+ u
66
+ ··· 20u 19)
c
5
(u
20
u
19
+ ··· u + 1)(u
67
+ 21u
65
+ ··· + 17u 43)
c
6
(u
20
+ 2u
19
+ ··· 4u
2
+ 1)(u
67
u
66
+ ··· 20u 1)
c
7
(u
20
+ 2u
19
+ ··· 2u
2
+ 1)(u
67
7u
66
+ ··· + 1902976u 712609)
c
8
(u
20
3u
19
+ ··· 10u
2
+ 1)
· (u
67
+ 6u
66
+ ··· + 57128562u 63140553)
c
9
(u
20
5u
18
+ ··· 6u
2
+ 1)(u
67
+ u
66
+ ··· 20u 19)
c
10
(u
20
10u
19
+ ··· 12u + 1)(u
67
19u
66
+ ··· + 5796u 361)
c
11
(u
20
2u
19
+ ··· 4u
2
+ 1)(u
67
u
66
+ ··· 20u 1)
c
12
(u
20
3u
19
+ ··· + 4u + 1)(u
67
+ 10u
66
+ ··· + 65390u + 26317)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 7y
19
+ ··· 13y + 1)
· (y
67
22y
66
+ ··· + 45805077y 3418801)
c
2
, c
5
(y
20
+ 11y
19
+ ··· + 15y + 1)(y
67
+ 42y
66
+ ··· 24651y 1849)
c
3
(y
20
+ 12y
19
+ ··· + 18y + 1)(y
67
+ 23y
66
+ ··· 28350y 729)
c
4
, c
9
(y
20
10y
19
+ ··· 12y + 1)(y
67
19y
66
+ ··· + 5796y 361)
c
6
, c
11
(y
20
14y
19
+ ··· 8y + 1)(y
67
15y
66
+ ··· + 72y 1)
c
7
(y
20
+ 18y
19
+ ··· 4y + 1)
· (y
67
23y
66
+ ··· 3886211988072y 507811586881)
c
8
(y
20
25y
19
+ ··· 20y + 1)
· (y
67
134y
66
+ ··· + 205611754284956160y 3986729433145809)
c
10
(y
20
+ 10y
19
+ ··· + 4y + 1)(y
67
+ 69y
66
+ ··· 1190900y 130321)
c
12
(y
20
17y
19
+ ··· + 4y + 1)
· (y
67
+ 14y
66
+ ··· + 48815900848y 692584489)
20