12n
0401
(K12n
0401
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 9 2 11 1 11 5 8 4
Solving Sequence
4,10
5
8,11
12 1 3 7 9 6 2
c
4
c
10
c
11
c
12
c
3
c
7
c
9
c
5
c
2
c
1
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h9.38926 × 10
46
u
60
4.46475 × 10
46
u
59
+ ··· + 4.27875 × 10
46
b 7.71448 × 10
47
,
5.92525 × 10
47
u
60
+ 3.42901 × 10
47
u
59
+ ··· + 2.99512 × 10
47
a + 4.84559 × 10
48
, u
61
u
60
+ ··· 4u + 7i
I
u
2
= hu
17
4u
15
+ 9u
13
11u
11
+ u
10
+ 9u
9
3u
8
2u
7
+ 4u
6
2u
5
2u
4
+ 4u
3
+ b u,
2u
17
+ u
16
+ 8u
15
4u
14
17u
13
+ 8u
12
+ 19u
11
10u
10
11u
9
+ 10u
8
4u
7
6u
6
+ 9u
5
5u
3
+ 3u
2
+ a,
u
18
5u
16
+ 13u
14
20u
12
+ u
11
+ 20u
10
4u
9
11u
8
+ 7u
7
+ u
6
6u
5
+ 4u
4
+ 2u
3
3u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 79 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h9.39×10
46
u
60
4.46×10
46
u
59
+· · ·+4.28×10
46
b7.71×10
47
, 5.93×
10
47
u
60
+3.43×10
47
u
59
+· · ·+3.00×10
47
a+4.85×10
48
, u
61
u
60
+· · ·4u+7i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
8
=
1.97830u
60
1.14487u
59
+ ··· 9.80742u 16.1783
2.19440u
60
+ 1.04347u
59
+ ··· + 9.97369u + 18.0298
a
11
=
u
u
3
+ u
a
12
=
2.02259u
60
1.64099u
59
+ ··· 13.4590u 21.6582
0.378227u
60
+ 0.935730u
59
+ ··· + 11.4450u + 10.1138
a
1
=
1.64436u
60
0.705262u
59
+ ··· 2.01406u 11.5444
0.378227u
60
+ 0.935730u
59
+ ··· + 11.4450u + 10.1138
a
3
=
0.129915u
60
+ 0.492637u
59
+ ··· + 13.1288u + 10.6244
0.000539469u
60
+ 0.281363u
59
+ ··· + 2.40949u + 4.06086
a
7
=
2.95189u
60
1.23072u
59
+ ··· 6.85929u 18.3643
2.29268u
60
+ 0.793366u
59
+ ··· + 3.76139u + 14.0016
a
9
=
u
3
u
5
u
3
+ u
a
6
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
4
a
2
=
0.888507u
60
+ 0.465150u
59
+ ··· + 15.6860u + 5.85422
0.416055u
60
0.229418u
59
+ ··· 3.73540u 1.33752
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8.30801u
60
+ 0.834443u
59
+ ··· + 12.8461u 49.4860
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
61
+ 22u
60
+ ··· 10584u 841
c
2
, c
6
u
61
2u
60
+ ··· 28u + 29
c
3
u
61
u
60
+ ··· + 4065u + 1393
c
4
, c
10
u
61
u
60
+ ··· 4u + 7
c
5
u
61
3u
60
+ ··· 11403u + 4312
c
7
, c
11
u
61
+ 36u
59
+ ··· + 207224u + 19571
c
8
u
61
+ 3u
60
+ ··· + 7u + 2
c
9
u
61
+ 27u
60
+ ··· + 324u + 49
c
12
u
61
+ 7u
60
+ ··· + 119062u + 4921
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
61
+ 58y
60
+ ··· + 53870952y 707281
c
2
, c
6
y
61
+ 22y
60
+ ··· 10584y 841
c
3
y
61
+ 73y
60
+ ··· 72881301y 1940449
c
4
, c
10
y
61
27y
60
+ ··· + 324y 49
c
5
y
61
15y
60
+ ··· + 131313385y 18593344
c
7
, c
11
y
61
+ 72y
60
+ ··· + 1955728272y 383024041
c
8
y
61
7y
60
+ ··· 103y 4
c
9
y
61
+ 21y
60
+ ··· + 6192y 2401
c
12
y
61
73y
60
+ ··· + 2203035738y 24216241
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.544084 + 0.851164I
a = 0.22388 1.93031I
b = 0.31996 + 1.63955I
10.17730 2.63661I 60.10 + 0.555426I
u = 0.544084 0.851164I
a = 0.22388 + 1.93031I
b = 0.31996 1.63955I
10.17730 + 2.63661I 60.10 0.555426I
u = 0.445650 + 0.880720I
a = 0.00876 + 1.94137I
b = 0.04581 1.68414I
9.55356 1.38109I 0.535194 + 0.791730I
u = 0.445650 0.880720I
a = 0.00876 1.94137I
b = 0.04581 + 1.68414I
9.55356 + 1.38109I 0.535194 0.791730I
u = 0.857683 + 0.546154I
a = 1.75197 + 2.08794I
b = 0.12804 1.85121I
3.18673 + 2.19097I 4.00000 2.72424I
u = 0.857683 0.546154I
a = 1.75197 2.08794I
b = 0.12804 + 1.85121I
3.18673 2.19097I 4.00000 + 2.72424I
u = 0.463945 + 0.927138I
a = 0.17894 1.78063I
b = 0.37576 + 1.74010I
8.91602 + 9.59094I 1.61071 4.50441I
u = 0.463945 0.927138I
a = 0.17894 + 1.78063I
b = 0.37576 1.74010I
8.91602 9.59094I 1.61071 + 4.50441I
u = 0.761332 + 0.580831I
a = 1.49622 0.76431I
b = 0.367406 + 0.509362I
0.006825 0.820615I 2.91463 0.80498I
u = 0.761332 0.580831I
a = 1.49622 + 0.76431I
b = 0.367406 0.509362I
0.006825 + 0.820615I 2.91463 + 0.80498I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.937561 + 0.135130I
a = 0.78806 1.55480I
b = 0.864887 0.122377I
3.52138 + 2.97859I 11.18161 4.01114I
u = 0.937561 0.135130I
a = 0.78806 + 1.55480I
b = 0.864887 + 0.122377I
3.52138 2.97859I 11.18161 + 4.01114I
u = 0.905464 + 0.577132I
a = 0.426084 1.101300I
b = 0.231182 + 0.850599I
0.44348 + 5.44090I 0. 6.18247I
u = 0.905464 0.577132I
a = 0.426084 + 1.101300I
b = 0.231182 0.850599I
0.44348 5.44090I 0. + 6.18247I
u = 0.725272 + 0.560786I
a = 0.721026 + 0.356999I
b = 0.552183 0.919955I
2.29564 1.22082I 0.17143 + 2.41236I
u = 0.725272 0.560786I
a = 0.721026 0.356999I
b = 0.552183 + 0.919955I
2.29564 + 1.22082I 0.17143 2.41236I
u = 0.570512 + 0.922531I
a = 0.20594 + 1.76543I
b = 0.02877 1.73498I
9.58894 4.78598I 0
u = 0.570512 0.922531I
a = 0.20594 1.76543I
b = 0.02877 + 1.73498I
9.58894 + 4.78598I 0
u = 0.612012 + 0.676924I
a = 0.762585 + 0.066634I
b = 1.25032 0.72018I
0.78856 3.53503I 0.67914 + 4.86526I
u = 0.612012 0.676924I
a = 0.762585 0.066634I
b = 1.25032 + 0.72018I
0.78856 + 3.53503I 0.67914 4.86526I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.972064 + 0.490213I
a = 2.15529 1.24439I
b = 0.639824 + 0.937890I
2.42306 5.32854I 0
u = 0.972064 0.490213I
a = 2.15529 + 1.24439I
b = 0.639824 0.937890I
2.42306 + 5.32854I 0
u = 0.912071 + 0.595227I
a = 0.550710 + 1.169500I
b = 0.814075 0.611211I
1.74431 3.44432I 0
u = 0.912071 0.595227I
a = 0.550710 1.169500I
b = 0.814075 + 0.611211I
1.74431 + 3.44432I 0
u = 1.027670 + 0.371040I
a = 0.144719 + 1.175400I
b = 0.518266 + 0.746154I
3.01798 + 0.68032I 0
u = 1.027670 0.371040I
a = 0.144719 1.175400I
b = 0.518266 0.746154I
3.01798 0.68032I 0
u = 0.794773 + 0.421843I
a = 0.03391 2.24073I
b = 0.398950 + 1.014180I
1.69691 + 1.58278I 7.41386 0.48848I
u = 0.794773 0.421843I
a = 0.03391 + 2.24073I
b = 0.398950 1.014180I
1.69691 1.58278I 7.41386 + 0.48848I
u = 1.060130 + 0.302950I
a = 0.104274 + 0.806163I
b = 0.063620 + 0.561834I
2.67023 + 0.50890I 0
u = 1.060130 0.302950I
a = 0.104274 0.806163I
b = 0.063620 0.561834I
2.67023 0.50890I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.778473 + 0.334352I
a = 0.994984 + 0.158157I
b = 0.123871 1.246270I
2.28478 1.44807I 0.58146 + 5.23010I
u = 0.778473 0.334352I
a = 0.994984 0.158157I
b = 0.123871 + 1.246270I
2.28478 + 1.44807I 0.58146 5.23010I
u = 0.875823 + 0.776386I
a = 1.08505 + 1.49485I
b = 0.17216 1.84671I
4.39723 2.92101I 0
u = 0.875823 0.776386I
a = 1.08505 1.49485I
b = 0.17216 + 1.84671I
4.39723 + 2.92101I 0
u = 1.009640 + 0.624975I
a = 0.47990 + 1.40571I
b = 1.42139 0.52111I
0.40012 + 8.60462I 0
u = 1.009640 0.624975I
a = 0.47990 1.40571I
b = 1.42139 + 0.52111I
0.40012 8.60462I 0
u = 1.198250 + 0.079684I
a = 0.330295 0.216625I
b = 0.12225 1.49577I
3.68795 1.11069I 0
u = 1.198250 0.079684I
a = 0.330295 + 0.216625I
b = 0.12225 + 1.49577I
3.68795 + 1.11069I 0
u = 1.086940 + 0.529361I
a = 1.111350 + 0.319218I
b = 0.067792 + 0.629900I
1.14743 6.56312I 0
u = 1.086940 0.529361I
a = 1.111350 0.319218I
b = 0.067792 0.629900I
1.14743 + 6.56312I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.136885 + 0.767965I
a = 0.557019 0.912726I
b = 0.121244 + 0.476633I
2.55621 + 0.33359I 6.44684 + 0.49435I
u = 0.136885 0.767965I
a = 0.557019 + 0.912726I
b = 0.121244 0.476633I
2.55621 0.33359I 6.44684 0.49435I
u = 1.178220 + 0.412066I
a = 0.728261 0.428533I
b = 0.188881 + 0.558152I
6.30273 4.26546I 0
u = 1.178220 0.412066I
a = 0.728261 + 0.428533I
b = 0.188881 0.558152I
6.30273 + 4.26546I 0
u = 1.077670 + 0.674826I
a = 1.70478 1.49229I
b = 0.41657 + 1.59039I
8.56121 + 8.31037I 0
u = 1.077670 0.674826I
a = 1.70478 + 1.49229I
b = 0.41657 1.59039I
8.56121 8.31037I 0
u = 1.283550 + 0.045302I
a = 0.117042 + 0.330596I
b = 0.24808 + 1.56716I
2.50815 6.87081I 0
u = 1.283550 0.045302I
a = 0.117042 0.330596I
b = 0.24808 1.56716I
2.50815 + 6.87081I 0
u = 0.310681 + 0.623756I
a = 0.498140 0.161924I
b = 0.017763 + 0.701512I
1.02214 + 2.04201I 1.04597 2.83641I
u = 0.310681 0.623756I
a = 0.498140 + 0.161924I
b = 0.017763 0.701512I
1.02214 2.04201I 1.04597 + 2.83641I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.203690 + 0.499462I
a = 0.111271 0.233894I
b = 0.117954 + 0.733032I
5.69633 + 4.42131I 0
u = 1.203690 0.499462I
a = 0.111271 + 0.233894I
b = 0.117954 0.733032I
5.69633 4.42131I 0
u = 1.134950 + 0.650042I
a = 1.64308 + 0.98161I
b = 0.05507 1.67770I
7.46478 + 7.04326I 0
u = 1.134950 0.650042I
a = 1.64308 0.98161I
b = 0.05507 + 1.67770I
7.46478 7.04326I 0
u = 1.096100 + 0.730179I
a = 1.46111 + 1.07505I
b = 0.11583 1.67692I
7.99251 1.27736I 0
u = 1.096100 0.730179I
a = 1.46111 1.07505I
b = 0.11583 + 1.67692I
7.99251 + 1.27736I 0
u = 1.142240 + 0.674079I
a = 1.67938 1.28751I
b = 0.47616 + 1.71273I
6.8432 15.4624I 0
u = 1.142240 0.674079I
a = 1.67938 + 1.28751I
b = 0.47616 1.71273I
6.8432 + 15.4624I 0
u = 0.653934
a = 0.815305
b = 0.427941
0.989818 9.99130
u = 0.155534 + 0.460253I
a = 0.400194 0.153253I
b = 0.678432 + 0.872645I
0.59531 + 2.53206I 1.68275 3.40674I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.155534 0.460253I
a = 0.400194 + 0.153253I
b = 0.678432 0.872645I
0.59531 2.53206I 1.68275 + 3.40674I
11
II. I
u
2
=
hu
17
4u
15
+· · ·+ b u, 2u
17
+u
16
+· · ·+ 3u
2
+a, u
18
5u
16
+· · · 3u
2
+1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
8
=
2u
17
u
16
+ ··· + 5u
3
3u
2
u
17
+ 4u
15
+ ··· 4u
3
+ u
a
11
=
u
u
3
+ u
a
12
=
u
16
u
15
+ ··· 4u + 2
u
16
+ 5u
14
+ ··· + u + 1
a
1
=
2u
16
u
15
+ ··· 3u + 3
u
16
+ 5u
14
+ ··· + u + 1
a
3
=
2u
17
+ 9u
15
+ ··· + 2u 1
u
16
+ 5u
14
+ ··· 3u
2
+ 2
a
7
=
2u
17
2u
16
+ ··· 4u
2
+ u
u
17
+ 4u
15
+ ··· 2u
2
+ 1
a
9
=
u
3
u
5
u
3
+ u
a
6
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
4
a
2
=
4u
17
+ 18u
15
+ ··· + 4u 2
u
16
+ 5u
14
+ ··· + u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
17
+ 5u
16
+ 21u
15
24u
14
48u
13
+ 58u
12
+ 64u
11
85u
10
51u
9
+ 83u
8
u
7
45u
6
+ 41u
5
+ 3u
4
37u
3
+ 15u
2
+ 7u 15
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
18
11u
17
+ ··· 18u + 1
c
2
u
18
u
17
+ ··· + 9u
2
+ 1
c
3
u
18
+ 9u
16
+ ··· + u + 1
c
4
u
18
5u
16
+ ··· 3u
2
+ 1
c
5
u
18
+ 3u
16
+ ··· 3u
2
+ 1
c
6
u
18
+ u
17
+ ··· + 9u
2
+ 1
c
7
u
18
+ u
17
+ ··· + 2u + 1
c
8
u
18
+ 2u
17
+ ··· + u + 1
c
9
u
18
10u
17
+ ··· 6u + 1
c
10
u
18
5u
16
+ ··· 3u
2
+ 1
c
11
u
18
u
17
+ ··· 2u + 1
c
12
u
18
+ 5u
15
+ ··· + 8u
2
+ 1
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 15y
17
+ ··· 34y + 1
c
2
, c
6
y
18
+ 11y
17
+ ··· + 18y + 1
c
3
y
18
+ 18y
17
+ ··· + 11y + 1
c
4
, c
10
y
18
10y
17
+ ··· 6y + 1
c
5
y
18
+ 6y
17
+ ··· 6y + 1
c
7
, c
11
y
18
7y
17
+ ··· 10y + 1
c
8
y
18
10y
17
+ ··· 7y + 1
c
9
y
18
+ 2y
17
+ ··· 2y + 1
c
12
y
18
4y
16
+ ··· + 16y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.904746 + 0.245141I
a = 1.270110 + 0.303445I
b = 0.07442 1.44586I
1.62879 1.07876I 10.54525 0.48529I
u = 0.904746 0.245141I
a = 1.270110 0.303445I
b = 0.07442 + 1.44586I
1.62879 + 1.07876I 10.54525 + 0.48529I
u = 1.016240 + 0.389137I
a = 0.74048 1.68593I
b = 0.332136 0.610814I
3.05100 0.53837I 10.07570 + 2.70036I
u = 1.016240 0.389137I
a = 0.74048 + 1.68593I
b = 0.332136 + 0.610814I
3.05100 + 0.53837I 10.07570 2.70036I
u = 0.881768 + 0.726056I
a = 1.25651 + 1.55510I
b = 0.14317 1.92438I
4.79527 + 2.77083I 5.95842 0.39060I
u = 0.881768 0.726056I
a = 1.25651 1.55510I
b = 0.14317 + 1.92438I
4.79527 2.77083I 5.95842 + 0.39060I
u = 1.037690 + 0.534998I
a = 1.356060 0.091628I
b = 0.463536 0.533807I
1.99612 6.79726I 10.09948 + 9.44320I
u = 1.037690 0.534998I
a = 1.356060 + 0.091628I
b = 0.463536 + 0.533807I
1.99612 + 6.79726I 10.09948 9.44320I
u = 0.551142 + 0.552499I
a = 0.792707 + 0.203931I
b = 0.528191 0.635299I
0.49089 + 2.36719I 4.89133 3.88006I
u = 0.551142 0.552499I
a = 0.792707 0.203931I
b = 0.528191 + 0.635299I
0.49089 2.36719I 4.89133 + 3.88006I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.098568 + 0.770121I
a = 0.013002 1.254100I
b = 0.425202 + 0.943436I
2.33749 1.65920I 4.80081 + 3.98111I
u = 0.098568 0.770121I
a = 0.013002 + 1.254100I
b = 0.425202 0.943436I
2.33749 + 1.65920I 4.80081 3.98111I
u = 0.703037 + 0.218633I
a = 1.90319 + 0.73681I
b = 0.332995 0.720155I
1.74343 + 3.40184I 6.62172 4.93370I
u = 0.703037 0.218633I
a = 1.90319 0.73681I
b = 0.332995 + 0.720155I
1.74343 3.40184I 6.62172 + 4.93370I
u = 1.194980 + 0.426737I
a = 0.839889 0.604413I
b = 0.331200 + 0.919578I
6.02412 + 5.77721I 9.54886 8.25145I
u = 1.194980 0.426737I
a = 0.839889 + 0.604413I
b = 0.331200 0.919578I
6.02412 5.77721I 9.54886 + 8.25145I
u = 1.203880 + 0.487334I
a = 0.592561 + 0.052274I
b = 0.377110 + 1.031540I
5.58543 3.01264I 6.87525 0.89912I
u = 1.203880 0.487334I
a = 0.592561 0.052274I
b = 0.377110 1.031540I
5.58543 + 3.01264I 6.87525 + 0.89912I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
11u
17
+ ··· 18u + 1)(u
61
+ 22u
60
+ ··· 10584u 841)
c
2
(u
18
u
17
+ ··· + 9u
2
+ 1)(u
61
2u
60
+ ··· 28u + 29)
c
3
(u
18
+ 9u
16
+ ··· + u + 1)(u
61
u
60
+ ··· + 4065u + 1393)
c
4
(u
18
5u
16
+ ··· 3u
2
+ 1)(u
61
u
60
+ ··· 4u + 7)
c
5
(u
18
+ 3u
16
+ ··· 3u
2
+ 1)(u
61
3u
60
+ ··· 11403u + 4312)
c
6
(u
18
+ u
17
+ ··· + 9u
2
+ 1)(u
61
2u
60
+ ··· 28u + 29)
c
7
(u
18
+ u
17
+ ··· + 2u + 1)(u
61
+ 36u
59
+ ··· + 207224u + 19571)
c
8
(u
18
+ 2u
17
+ ··· + u + 1)(u
61
+ 3u
60
+ ··· + 7u + 2)
c
9
(u
18
10u
17
+ ··· 6u + 1)(u
61
+ 27u
60
+ ··· + 324u + 49)
c
10
(u
18
5u
16
+ ··· 3u
2
+ 1)(u
61
u
60
+ ··· 4u + 7)
c
11
(u
18
u
17
+ ··· 2u + 1)(u
61
+ 36u
59
+ ··· + 207224u + 19571)
c
12
(u
18
+ 5u
15
+ ··· + 8u
2
+ 1)(u
61
+ 7u
60
+ ··· + 119062u + 4921)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
18
+ 15y
17
+ ··· 34y + 1)
· (y
61
+ 58y
60
+ ··· + 53870952y 707281)
c
2
, c
6
(y
18
+ 11y
17
+ ··· + 18y + 1)(y
61
+ 22y
60
+ ··· 10584y 841)
c
3
(y
18
+ 18y
17
+ ··· + 11y + 1)
· (y
61
+ 73y
60
+ ··· 72881301y 1940449)
c
4
, c
10
(y
18
10y
17
+ ··· 6y + 1)(y
61
27y
60
+ ··· + 324y 49)
c
5
(y
18
+ 6y
17
+ ··· 6y + 1)
· (y
61
15y
60
+ ··· + 131313385y 18593344)
c
7
, c
11
(y
18
7y
17
+ ··· 10y + 1)
· (y
61
+ 72y
60
+ ··· + 1955728272y 383024041)
c
8
(y
18
10y
17
+ ··· 7y + 1)(y
61
7y
60
+ ··· 103y 4)
c
9
(y
18
+ 2y
17
+ ··· 2y + 1)(y
61
+ 21y
60
+ ··· + 6192y 2401)
c
12
(y
18
4y
16
+ ··· + 16y + 1)
· (y
61
73y
60
+ ··· + 2203035738y 24216241)
20