12n
0403
(K12n
0403
)
A knot diagram
1
Linearized knot diagam
3 6 10 11 12 2 12 3 1 4 8 10
Solving Sequence
3,10
4 11
1,5
9 8 12 6 2 7
c
3
c
10
c
4
c
9
c
8
c
12
c
5
c
2
c
6
c
1
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
4
3u
3
2u
2
+ b + 1, u
3
+ 2u
2
+ a u 1, u
5
+ 5u
4
+ 7u
3
+ u
2
2u 1i
I
u
2
= h−u
4
+ u
3
+ 2u
2
+ b 2u + 1, u
3
+ a 3u 1, u
5
+ u
4
3u
3
3u
2
1i
I
u
3
= h−u
2
a + au + u
2
+ 2b a 3u + 1, u
2
a + a
2
au 2a + u, u
3
2u
2
1i
I
u
4
= hb 1, 4a u 3, u
2
u 4i
I
u
5
= h−au + b a + 1, a
2
a u + 2, u
2
u 1i
* 5 irreducible components of dim
C
= 0, with total 22 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
4
3u
3
2u
2
+b+1, u
3
+2u
2
+au1, u
5
+5u
4
+7u
3
+u
2
2u1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
u
3
2u
2
+ u + 1
u
4
+ 3u
3
+ 2u
2
1
a
5
=
u
2
+ 1
u
4
2u
2
a
9
=
u
2
u
4
4u
3
2u
2
+ 2u + 1
a
8
=
u
4
+ 4u
3
+ 3u
2
2u 1
u
4
4u
3
2u
2
+ 2u + 1
a
12
=
u
3
2u
2
+ u + 1
2u
4
5u
3
+ 2u
a
6
=
1
u
4
4u
3
4u
2
+ u + 1
a
2
=
u
4
4u
3
4u
2
+ u + 2
u
4
+ 3u
3
+ 2u
2
1
a
7
=
u
3
2u
2
+ u + 1
2u
4
6u
3
3u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
4
22u
3
12u
2
+ 18u + 9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
+ u
4
+ 7u
3
+ 8u
2
+ u 1
c
2
, c
6
, c
7
c
11
u
5
3u
4
+ 5u
3
4u
2
+ 3u 1
c
3
, c
4
, c
10
u
5
+ 5u
4
+ 7u
3
+ u
2
2u 1
c
5
, c
9
, c
12
u
5
u
4
+ 12u
3
+ 3u
2
u 1
c
8
u
5
14u
4
+ 51u
3
6u
2
+ 4u 13
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
+ 13y
4
+ 35y
3
48y
2
+ 17y 1
c
2
, c
6
, c
7
c
11
y
5
+ y
4
+ 7y
3
+ 8y
2
+ y 1
c
3
, c
4
, c
10
y
5
11y
4
+ 35y
3
19y
2
+ 6y 1
c
5
, c
9
, c
12
y
5
+ 23y
4
+ 148y
3
35y
2
+ 7y 1
c
8
y
5
94y
4
+ 2441y
3
+ 8y
2
140y 169
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.483921 + 0.312340I
a = 0.214528 + 0.727972I
b = 0.714557 0.120312I
1.93405 1.28592I 1.53646 + 5.58816I
u = 0.483921 0.312340I
a = 0.214528 0.727972I
b = 0.714557 + 0.120312I
1.93405 + 1.28592I 1.53646 5.58816I
u = 0.563096
a = 0.750397
b = 0.270326
0.922645 10.8000
u = 2.29763 + 0.27249I
a = 0.08973 1.51845I
b = 0.07939 2.65310I
13.3317 8.5417I 7.63666 + 3.64244I
u = 2.29763 0.27249I
a = 0.08973 + 1.51845I
b = 0.07939 + 2.65310I
13.3317 + 8.5417I 7.63666 3.64244I
5
II.
I
u
2
= h−u
4
+ u
3
+ 2u
2
+ b 2u + 1, u
3
+ a 3u 1, u
5
+ u
4
3u
3
3u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
u
3
+ 3u + 1
u
4
u
3
2u
2
+ 2u 1
a
5
=
u
2
+ 1
u
4
2u
2
a
9
=
u
2
2
u
4
2u
2
1
a
8
=
u
4
+ 3u
2
1
u
4
2u
2
1
a
12
=
u
3
+ 3u + 1
u
3
+ 2u
a
6
=
1
u
4
2u
2
u 1
a
2
=
u
4
+ 2u
2
+ u + 2
u
4
u
3
2u
2
+ 2u 1
a
7
=
u
3
3u 1
2u
4
5u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
+ 6u
3
+ 4u
2
14u + 5
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
+ 3u
3
+ u + 1
c
2
, c
7
u
5
u
4
+ u
3
+ u 1
c
3
, c
4
u
5
+ u
4
3u
3
3u
2
1
c
5
, c
12
u
5
u
4
u
2
+ u 1
c
6
, c
11
u
5
+ u
4
+ u
3
+ u + 1
c
8
u
5
3u
3
+ 6u
2
4u + 1
c
9
u
5
+ u
4
+ u
2
+ u + 1
c
10
u
5
u
4
3u
3
+ 3u
2
+ 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
+ 5y
4
+ 11y
3
+ 8y
2
+ y 1
c
2
, c
6
, c
7
c
11
y
5
+ y
4
+ 3y
3
+ y 1
c
3
, c
4
, c
10
y
5
7y
4
+ 15y
3
7y
2
6y 1
c
5
, c
9
, c
12
y
5
y
4
3y
2
y 1
c
8
y
5
6y
4
+ y
3
12y
2
+ 4y 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.48162 + 0.12936I
a = 0.266775 0.461665I
b = 0.54328 1.49449I
6.00251 5.77307I 6.19041 + 5.09435I
u = 1.48162 0.12936I
a = 0.266775 + 0.461665I
b = 0.54328 + 1.49449I
6.00251 + 5.77307I 6.19041 5.09435I
u = 0.099006 + 0.496292I
a = 1.36921 + 1.59652I
b = 0.210516 + 0.857202I
0.38751 + 3.74061I 2.14222 7.10791I
u = 0.099006 0.496292I
a = 1.36921 1.59652I
b = 0.210516 0.857202I
0.38751 3.74061I 2.14222 + 7.10791I
u = 1.76524
a = 0.795136
b = 0.507589
6.95916 6.33470
9
III.
I
u
3
= h−u
2
a + au + u
2
+ 2b a 3u + 1, u
2
a + a
2
au 2a + u, u
3
2u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
2u
2
+ u 1
a
1
=
a
1
2
u
2
a
1
2
u
2
+ ··· +
1
2
a
1
2
a
5
=
u
2
+ 1
2u
2
+ u + 2
a
9
=
u
2
a + 2au u
2
a
1
2
u
2
a
3
2
u
2
+ ···
1
2
a
1
2
a
8
=
1
2
u
2
a +
1
2
u
2
+ ···
1
2
a +
1
2
1
2
u
2
a
3
2
u
2
+ ···
1
2
a
1
2
a
12
=
a
1
2
u
2
a
1
2
u
2
+ ··· +
1
2
a
1
2
a
6
=
1
1
2
u
2
a +
1
2
u
2
+ ··· +
1
2
a
1
2
a
2
=
1
2
u
2
a +
1
2
u
2
+ ··· +
1
2
a +
1
2
1
2
u
2
a
1
2
u
2
+ ··· +
1
2
a
1
2
a
7
=
a
u
2
a + au + u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
2u + 7
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 8u
4
4u
3
+ 8u
2
9u + 4
c
2
, c
6
, c
7
c
11
u
6
2u
5
+ 2u
4
+ 2u
3
2u
2
+ u + 2
c
3
, c
4
, c
10
(u
3
2u
2
1)
2
c
5
, c
9
, c
12
u
6
+ 3u
5
+ 16u
4
+ 22u
3
+ 34u
2
+ 11u + 1
c
8
u
6
+ 14u
5
+ 69u
4
+ 114u
3
+ 127u
2
+ 27u + 22
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
+ 16y
5
+ 80y
4
+ 120y
3
+ 56y
2
17y + 16
c
2
, c
6
, c
7
c
11
y
6
+ 8y
4
4y
3
+ 8y
2
9y + 4
c
3
, c
4
, c
10
(y
3
4y
2
4y 1)
2
c
5
, c
9
, c
12
y
6
+ 23y
5
+ 192y
4
+ 540y
3
+ 704y
2
53y + 1
c
8
y
6
58y
5
+ 1823y
4
+ 3818y
3
+ 13009y
2
+ 4859y + 484
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.102785 + 0.665457I
a = 0.019191 + 0.283733I
b = 0.317796 + 1.154010I
1.03690 + 2.56897I 6.77330 1.46771I
u = 0.102785 + 0.665457I
a = 2.31029 + 0.51852I
b = 0.544495 + 0.313702I
1.03690 + 2.56897I 6.77330 1.46771I
u = 0.102785 0.665457I
a = 0.019191 0.283733I
b = 0.317796 1.154010I
1.03690 2.56897I 6.77330 + 1.46771I
u = 0.102785 0.665457I
a = 2.31029 0.51852I
b = 0.544495 0.313702I
1.03690 2.56897I 6.77330 + 1.46771I
u = 2.20557
a = 0.32948 + 1.44811I
b = 0.22670 + 2.64929I
13.5883 7.45340
u = 2.20557
a = 0.32948 1.44811I
b = 0.22670 2.64929I
13.5883 7.45340
13
IV. I
u
4
= hb 1, 4a u 3, u
2
u 4i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u 4
a
11
=
u
4u 4
a
1
=
1
4
u +
3
4
1
a
5
=
u 3
7u + 12
a
9
=
5
4
u +
7
4
2u + 1
a
8
=
3
4
u +
3
4
2u + 1
a
12
=
1
4
u +
3
4
2u 3
a
6
=
1
4
u
5
4
1
a
2
=
1
4
u
1
4
1
a
7
=
1
2
u
3
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
6
, c
7
c
11
(u + 1)
2
c
3
, c
4
, c
10
u
2
u 4
c
5
, c
9
, c
12
u
2
3u 2
c
8
u
2
4u 13
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
(y 1)
2
c
3
, c
4
, c
10
y
2
9y + 16
c
5
, c
9
, c
12
y
2
13y + 4
c
8
y
2
42y + 169
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.56155
a = 0.359612
b = 1.00000
8.22467 14.0000
u = 2.56155
a = 1.39039
b = 1.00000
8.22467 14.0000
17
V. I
u
5
= h−au + b a + 1, a
2
a u + 2, u
2
u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u 1
a
11
=
u
u 1
a
1
=
a
au + a 1
a
5
=
u
u
a
9
=
au u + 1
au + a
a
8
=
a u + 1
au + a
a
12
=
a
1
a
6
=
1
au
a
2
=
au + 1
au + a 1
a
7
=
a
2au + a u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u + 6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
12
u
4
u
3
+ u
2
u + 1
c
3
, c
4
(u
2
u 1)
2
c
6
, c
9
, c
11
u
4
+ u
3
+ u
2
+ u + 1
c
8
u
4
+ 3u
3
+ 4u
2
+ 2u + 1
c
10
(u
2
+ u 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
c
11
, c
12
y
4
+ y
3
+ y
2
+ y + 1
c
3
, c
4
, c
10
(y
2
3y + 1)
2
c
8
y
4
y
3
+ 6y
2
+ 4y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.50000 + 1.53884I
b = 0.809017 + 0.587785I
0.657974 5.38200
u = 0.618034
a = 0.50000 1.53884I
b = 0.809017 0.587785I
0.657974 5.38200
u = 1.61803
a = 0.500000 + 0.363271I
b = 0.309017 + 0.951057I
7.23771 7.61800
u = 1.61803
a = 0.500000 0.363271I
b = 0.309017 0.951057I
7.23771 7.61800
21
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
(u
4
u
3
+ u
2
u + 1)(u
5
u
4
+ 3u
3
+ u + 1)
· (u
5
+ u
4
+ 7u
3
+ 8u
2
+ u 1)(u
6
+ 8u
4
4u
3
+ 8u
2
9u + 4)
c
2
, c
7
(u + 1)
2
(u
4
u
3
+ u
2
u + 1)(u
5
3u
4
+ 5u
3
4u
2
+ 3u 1)
· (u
5
u
4
+ u
3
+ u 1)(u
6
2u
5
+ 2u
4
+ 2u
3
2u
2
+ u + 2)
c
3
, c
4
(u
2
u 4)(u
2
u 1)
2
(u
3
2u
2
1)
2
(u
5
+ u
4
3u
3
3u
2
1)
· (u
5
+ 5u
4
+ 7u
3
+ u
2
2u 1)
c
5
, c
12
(u
2
3u 2)(u
4
u
3
+ u
2
u + 1)(u
5
u
4
u
2
+ u 1)
· (u
5
u
4
+ 12u
3
+ 3u
2
u 1)(u
6
+ 3u
5
+ ··· + 11u + 1)
c
6
, c
11
(u + 1)
2
(u
4
+ u
3
+ u
2
+ u + 1)(u
5
3u
4
+ 5u
3
4u
2
+ 3u 1)
· (u
5
+ u
4
+ u
3
+ u + 1)(u
6
2u
5
+ 2u
4
+ 2u
3
2u
2
+ u + 2)
c
8
(u
2
4u 13)(u
4
+ 3u
3
+ 4u
2
+ 2u + 1)(u
5
3u
3
+ 6u
2
4u + 1)
· (u
5
14u
4
+ 51u
3
6u
2
+ 4u 13)
· (u
6
+ 14u
5
+ 69u
4
+ 114u
3
+ 127u
2
+ 27u + 22)
c
9
(u
2
3u 2)(u
4
+ u
3
+ u
2
+ u + 1)(u
5
u
4
+ 12u
3
+ 3u
2
u 1)
· (u
5
+ u
4
+ u
2
+ u + 1)(u
6
+ 3u
5
+ 16u
4
+ 22u
3
+ 34u
2
+ 11u + 1)
c
10
(u
2
u 4)(u
2
+ u 1)
2
(u
3
2u
2
1)
2
(u
5
u
4
3u
3
+ 3u
2
+ 1)
· (u
5
+ 5u
4
+ 7u
3
+ u
2
2u 1)
22
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
(y
4
+ y
3
+ y
2
+ y + 1)(y
5
+ 5y
4
+ 11y
3
+ 8y
2
+ y 1)
· (y
5
+ 13y
4
+ 35y
3
48y
2
+ 17y 1)
· (y
6
+ 16y
5
+ 80y
4
+ 120y
3
+ 56y
2
17y + 16)
c
2
, c
6
, c
7
c
11
(y 1)
2
(y
4
+ y
3
+ y
2
+ y + 1)(y
5
+ y
4
+ 3y
3
+ y 1)
· (y
5
+ y
4
+ 7y
3
+ 8y
2
+ y 1)(y
6
+ 8y
4
4y
3
+ 8y
2
9y + 4)
c
3
, c
4
, c
10
(y
2
9y + 16)(y
2
3y + 1)
2
(y
3
4y
2
4y 1)
2
· (y
5
11y
4
+ 35y
3
19y
2
+ 6y 1)(y
5
7y
4
+ 15y
3
7y
2
6y 1)
c
5
, c
9
, c
12
(y
2
13y + 4)(y
4
+ y
3
+ y
2
+ y + 1)(y
5
y
4
3y
2
y 1)
· (y
5
+ 23y
4
+ 148y
3
35y
2
+ 7y 1)
· (y
6
+ 23y
5
+ 192y
4
+ 540y
3
+ 704y
2
53y + 1)
c
8
(y
2
42y + 169)(y
4
y
3
+ 6y
2
+ 4y + 1)
· (y
5
94y
4
+ 2441y
3
+ 8y
2
140y 169)
· (y
5
6y
4
+ y
3
12y
2
+ 4y 1)
· (y
6
58y
5
+ 1823y
4
+ 3818y
3
+ 13009y
2
+ 4859y + 484)
23