12n
0405
(K12n
0405
)
A knot diagram
1
Linearized knot diagam
3 6 11 8 2 12 3 6 7 4 10 9
Solving Sequence
3,11 4,7
8 5 10 12 6 2 1 9
c
3
c
7
c
4
c
10
c
11
c
6
c
2
c
1
c
9
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.04740 × 10
30
u
55
2.66361 × 10
30
u
54
+ ··· + 5.37736 × 10
30
b 1.62190 × 10
31
,
1.29311 × 10
31
u
55
2.08861 × 10
29
u
54
+ ··· + 1.07547 × 10
31
a + 7.57948 × 10
31
, u
56
+ u
55
+ ··· + 11u + 1i
I
u
2
= h−u
18
5u
16
+ ··· + b 1, 39u
19
13u
18
+ ··· + 46a 113, u
20
+ 5u
18
+ ··· + 3u + 1i
* 2 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.05×10
30
u
55
2.66×10
30
u
54
+· · ·+5.38×10
30
b1.62×10
31
, 1.29×
10
31
u
55
2.09×10
29
u
54
+· · ·+1.08×10
31
a+7.58×10
31
, u
56
+u
55
+· · ·+11u+1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
7
=
1.20236u
55
+ 0.0194204u
54
+ ··· + 2.12491u 7.04759
0.938638u
55
+ 0.495339u
54
+ ··· + 12.7233u + 3.01616
a
8
=
0.263723u
55
0.475918u
54
+ ··· 10.5984u 10.0637
0.938638u
55
+ 0.495339u
54
+ ··· + 12.7233u + 3.01616
a
5
=
1.47729u
55
2.00842u
54
+ ··· 77.8992u 24.8854
1.30201u
55
+ 0.374284u
54
+ ··· + 17.0385u + 5.14052
a
10
=
u
u
3
+ u
a
12
=
u
3
u
5
+ u
3
+ u
a
6
=
1.26914u
55
0.0878330u
54
+ ··· + 2.68555u 7.01937
0.932246u
55
+ 0.339280u
54
+ ··· + 7.82652u + 2.41420
a
2
=
0.0113393u
55
+ 0.701676u
54
+ ··· + 33.7128u + 17.2063
0.985020u
55
+ 0.0619797u
54
+ ··· 14.0951u 4.29081
a
1
=
0.996359u
55
+ 0.763656u
54
+ ··· + 19.6177u + 12.9155
0.985020u
55
+ 0.0619797u
54
+ ··· 14.0951u 4.29081
a
9
=
0.673812u
55
+ 1.74584u
54
+ ··· + 30.9969u + 11.4293
1.53887u
55
0.462506u
54
+ ··· 10.8493u 3.21916
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.20118u
55
1.25466u
54
+ ··· 55.5550u 11.0853
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
56
+ 81u
55
+ ··· 82u + 1
c
2
, c
5
u
56
+ 3u
55
+ ··· + 20u 1
c
3
, c
10
u
56
+ u
55
+ ··· + 11u + 1
c
4
u
56
u
55
+ ··· 5248u 1021
c
6
u
56
2u
55
+ ··· + 74u + 127
c
7
u
56
u
55
+ ··· + 211173u 7921
c
8
u
56
+ 10u
55
+ ··· + 155830u + 215404
c
9
u
56
+ 16u
55
+ ··· + 815u + 53
c
11
u
56
23u
55
+ ··· + 43u + 1
c
12
u
56
9u
55
+ ··· 735411u 85511
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
56
201y
55
+ ··· 18994y + 1
c
2
, c
5
y
56
81y
55
+ ··· + 82y + 1
c
3
, c
10
y
56
+ 23y
55
+ ··· 43y + 1
c
4
y
56
97y
55
+ ··· + 134121594y + 1042441
c
6
y
56
+ 14y
55
+ ··· + 197216y + 16129
c
7
y
56
59y
55
+ ··· + 2248587717y + 62742241
c
8
y
56
106y
55
+ ··· 2285891007612y + 46398883216
c
9
y
56
+ 12y
55
+ ··· 7449y + 2809
c
11
y
56
+ 27y
55
+ ··· 3871y + 1
c
12
y
56
45y
55
+ ··· 1207444021181y + 7312131121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.692976 + 0.741456I
a = 0.83415 2.68568I
b = 2.82225 1.87057I
13.01880 0.11658I 13.39749 + 0.26224I
u = 0.692976 0.741456I
a = 0.83415 + 2.68568I
b = 2.82225 + 1.87057I
13.01880 + 0.11658I 13.39749 0.26224I
u = 0.888534 + 0.493154I
a = 0.787487 + 0.456037I
b = 0.828874 + 0.814475I
4.23499 0.34965I 13.31370 + 0.I
u = 0.888534 0.493154I
a = 0.787487 0.456037I
b = 0.828874 0.814475I
4.23499 + 0.34965I 13.31370 + 0.I
u = 0.633685 + 0.804537I
a = 2.26499 + 1.02925I
b = 1.64637 1.29628I
2.67621 + 0.18944I 11.22703 1.60949I
u = 0.633685 0.804537I
a = 2.26499 1.02925I
b = 1.64637 + 1.29628I
2.67621 0.18944I 11.22703 + 1.60949I
u = 0.633438 + 0.738930I
a = 1.67728 0.91484I
b = 1.368790 + 0.135930I
12.20520 + 0.71501I 16.2418 + 1.0323I
u = 0.633438 0.738930I
a = 1.67728 + 0.91484I
b = 1.368790 0.135930I
12.20520 0.71501I 16.2418 1.0323I
u = 0.858766 + 0.568486I
a = 1.39718 0.43816I
b = 1.51683 + 0.16349I
4.83444 + 3.81788I 12.17523 2.36589I
u = 0.858766 0.568486I
a = 1.39718 + 0.43816I
b = 1.51683 0.16349I
4.83444 3.81788I 12.17523 + 2.36589I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.636578 + 0.817575I
a = 0.793907 + 0.325846I
b = 0.824038 + 0.535982I
3.51130 0.72418I 12.99804 0.44886I
u = 0.636578 0.817575I
a = 0.793907 0.325846I
b = 0.824038 0.535982I
3.51130 + 0.72418I 12.99804 + 0.44886I
u = 0.104993 + 1.060980I
a = 0.053924 + 0.614830I
b = 0.345359 0.952663I
3.62265 + 0.91650I 60.912924 + 0.10I
u = 0.104993 1.060980I
a = 0.053924 0.614830I
b = 0.345359 + 0.952663I
3.62265 0.91650I 60.912924 + 0.10I
u = 0.047680 + 0.929101I
a = 2.35142 0.07585I
b = 0.959476 + 0.938322I
8.23805 + 0.54981I 5.62601 + 0.13195I
u = 0.047680 0.929101I
a = 2.35142 + 0.07585I
b = 0.959476 0.938322I
8.23805 0.54981I 5.62601 0.13195I
u = 0.639057 + 0.870621I
a = 1.25596 0.86121I
b = 0.544969 + 0.721077I
3.35127 4.26074I 12.1347 + 7.9623I
u = 0.639057 0.870621I
a = 1.25596 + 0.86121I
b = 0.544969 0.721077I
3.35127 + 4.26074I 12.1347 7.9623I
u = 0.622311 + 0.676205I
a = 1.52391 + 0.07731I
b = 0.701853 + 0.906118I
1.41377 + 1.41882I 7.66827 2.37637I
u = 0.622311 0.676205I
a = 1.52391 0.07731I
b = 0.701853 0.906118I
1.41377 1.41882I 7.66827 + 2.37637I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.002470 + 0.434054I
a = 0.995062 0.161033I
b = 1.65678 0.10063I
14.5702 3.5038I 12.90961 + 3.29634I
u = 1.002470 0.434054I
a = 0.995062 + 0.161033I
b = 1.65678 + 0.10063I
14.5702 + 3.5038I 12.90961 3.29634I
u = 0.934670 + 0.567956I
a = 1.31747 1.19240I
b = 1.95969 1.15142I
15.5375 8.7539I 11.13073 + 3.10208I
u = 0.934670 0.567956I
a = 1.31747 + 1.19240I
b = 1.95969 + 1.15142I
15.5375 + 8.7539I 11.13073 3.10208I
u = 0.631753 + 0.901368I
a = 1.02898 1.61492I
b = 2.09741 0.75187I
2.37070 + 4.76407I 10.20100 5.68692I
u = 0.631753 0.901368I
a = 1.02898 + 1.61492I
b = 2.09741 + 0.75187I
2.37070 4.76407I 10.20100 + 5.68692I
u = 0.204920 + 1.113530I
a = 0.265324 + 0.432938I
b = 0.0303195 + 0.0315283I
2.10184 + 2.44163I 6.00000 6.66179I
u = 0.204920 1.113530I
a = 0.265324 0.432938I
b = 0.0303195 0.0315283I
2.10184 2.44163I 6.00000 + 6.66179I
u = 0.637975 + 0.945501I
a = 0.49971 2.41919I
b = 1.051990 + 0.178832I
11.56320 + 4.27962I 0
u = 0.637975 0.945501I
a = 0.49971 + 2.41919I
b = 1.051990 0.178832I
11.56320 4.27962I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.628401 + 0.578258I
a = 1.49132 + 0.91673I
b = 0.663752 + 0.368778I
0.88901 + 2.15046I 6.68954 4.21266I
u = 0.628401 0.578258I
a = 1.49132 0.91673I
b = 0.663752 0.368778I
0.88901 2.15046I 6.68954 + 4.21266I
u = 0.617638 + 0.982030I
a = 0.453503 + 0.970711I
b = 1.147700 + 0.399179I
0.48219 + 3.48780I 0
u = 0.617638 0.982030I
a = 0.453503 0.970711I
b = 1.147700 0.399179I
0.48219 3.48780I 0
u = 0.674791 + 0.947519I
a = 2.87088 + 0.86323I
b = 2.20281 2.50210I
12.39390 5.16219I 0
u = 0.674791 0.947519I
a = 2.87088 0.86323I
b = 2.20281 + 2.50210I
12.39390 + 5.16219I 0
u = 0.205795 + 0.791172I
a = 0.622285 0.611724I
b = 1.082330 0.398478I
0.118397 0.860000I 3.74291 + 1.06399I
u = 0.205795 0.791172I
a = 0.622285 + 0.611724I
b = 1.082330 + 0.398478I
0.118397 + 0.860000I 3.74291 1.06399I
u = 0.622297 + 1.014000I
a = 1.75434 0.58914I
b = 0.968744 + 0.647144I
0.37205 7.12007I 0
u = 0.622297 1.014000I
a = 1.75434 + 0.58914I
b = 0.968744 0.647144I
0.37205 + 7.12007I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.693949 + 1.070290I
a = 0.98029 + 1.20357I
b = 1.74189 0.24768I
3.32079 9.58196I 0
u = 0.693949 1.070290I
a = 0.98029 1.20357I
b = 1.74189 + 0.24768I
3.32079 + 9.58196I 0
u = 0.137699 + 1.273350I
a = 0.353439 + 0.379773I
b = 0.460194 0.278269I
2.02092 + 2.34731I 0
u = 0.137699 1.273350I
a = 0.353439 0.379773I
b = 0.460194 + 0.278269I
2.02092 2.34731I 0
u = 0.105350 + 1.287810I
a = 0.735406 0.340219I
b = 1.31301 + 0.75117I
8.24037 6.79326I 0
u = 0.105350 1.287810I
a = 0.735406 + 0.340219I
b = 1.31301 0.75117I
8.24037 + 6.79326I 0
u = 0.684933 + 1.102170I
a = 1.35653 0.57109I
b = 0.746484 + 1.007420I
2.41411 + 6.13994I 0
u = 0.684933 1.102170I
a = 1.35653 + 0.57109I
b = 0.746484 1.007420I
2.41411 6.13994I 0
u = 0.720000 + 1.106020I
a = 1.91793 + 1.16363I
b = 1.89543 1.46698I
13.8786 + 14.8239I 0
u = 0.720000 1.106020I
a = 1.91793 1.16363I
b = 1.89543 + 1.46698I
13.8786 14.8239I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.705581 + 1.210660I
a = 0.274806 1.197140I
b = 1.40944 + 0.27613I
12.19060 2.71913I 0
u = 0.705581 1.210660I
a = 0.274806 + 1.197140I
b = 1.40944 0.27613I
12.19060 + 2.71913I 0
u = 0.001183 + 0.423530I
a = 2.64102 + 1.15828I
b = 0.087714 + 0.372288I
0.61644 + 1.72204I 1.75056 4.93921I
u = 0.001183 0.423530I
a = 2.64102 1.15828I
b = 0.087714 0.372288I
0.61644 1.72204I 1.75056 + 4.93921I
u = 0.403232
a = 0.866892
b = 0.486409
0.901459 10.8820
u = 0.127485
a = 7.70303
b = 1.93220
11.0448 6.10820
10
II. I
u
2
= h−u
18
5u
16
+ · · · + b 1, 39u
19
13u
18
+ · · · + 46a 113, u
20
+
5u
18
+ · · · + 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
7
=
0.847826u
19
+ 0.282609u
18
+ ··· + 4.73913u + 2.45652
u
18
+ 5u
16
+ ··· + 2u + 1
a
8
=
0.847826u
19
0.717391u
18
+ ··· + 2.73913u + 1.45652
u
18
+ 5u
16
+ ··· + 2u + 1
a
5
=
1.43478u
19
+ 0.478261u
18
+ ··· + 4.17391u + 2.69565
0.543478u
19
0.847826u
18
+ ··· 3.21739u 0.369565
a
10
=
u
u
3
+ u
a
12
=
u
3
u
5
+ u
3
+ u
a
6
=
0.956522u
19
0.347826u
18
+ ··· + 3.78261u + 2.13043
0.543478u
19
+ 0.847826u
18
+ ··· + 2.21739u + 1.36957
a
2
=
0.152174u
19
+ 0.717391u
18
+ ··· 1.73913u 0.456522
0.239130u
19
+ 0.413043u
18
+ ··· + 0.695652u 0.717391
a
1
=
0.391304u
19
+ 1.13043u
18
+ ··· 1.04348u 1.17391
0.239130u
19
+ 0.413043u
18
+ ··· + 0.695652u 0.717391
a
9
=
0.847826u
19
0.282609u
18
+ ··· 2.73913u 1.45652
0.478261u
19
0.826087u
18
+ ··· 2.39130u 0.565217
(ii) Obstruction class = 1
(iii) Cusp Shapes =
83
23
u
19
+
3
23
u
18
+ ···
47
23
u
303
23
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
20
22u
19
+ ··· + 4u + 1
c
2
u
20
+ 2u
19
+ ··· 2u + 1
c
3
u
20
+ 5u
18
+ ··· + 3u + 1
c
4
u
20
+ 2u
19
+ ··· 6u + 1
c
5
u
20
2u
19
+ ··· + 2u + 1
c
6
u
20
u
19
+ ··· 4u + 1
c
7
u
20
6u
18
+ ··· + 3u + 1
c
8
u
20
+ 17u
19
+ ··· + 50u + 4
c
9
u
20
3u
19
+ ··· u + 1
c
10
u
20
+ 5u
18
+ ··· 3u + 1
c
11
u
20
10u
19
+ ··· + u + 1
c
12
u
20
4u
19
+ ··· u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
38y
19
+ ··· + 52y + 1
c
2
, c
5
y
20
22y
19
+ ··· + 4y + 1
c
3
, c
10
y
20
+ 10y
19
+ ··· y + 1
c
4
y
20
14y
19
+ ··· + 16y + 1
c
6
y
20
+ y
19
+ ··· 6y + 1
c
7
y
20
12y
19
+ ··· 13y + 1
c
8
y
20
19y
19
+ ··· + 116y + 16
c
9
y
20
5y
19
+ ··· 3y + 1
c
11
y
20
+ 6y
19
+ ··· y + 1
c
12
y
20
6y
19
+ ··· + y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772905 + 0.572344I
a = 0.933396 + 0.819549I
b = 0.558966 + 0.337682I
2.53009 + 3.40174I 9.63788 3.26819I
u = 0.772905 0.572344I
a = 0.933396 0.819549I
b = 0.558966 0.337682I
2.53009 3.40174I 9.63788 + 3.26819I
u = 0.682482 + 0.838468I
a = 0.785516 + 0.464945I
b = 0.280995 + 1.364070I
2.91107 + 2.63432I 11.73829 3.12601I
u = 0.682482 0.838468I
a = 0.785516 0.464945I
b = 0.280995 1.364070I
2.91107 2.63432I 11.73829 + 3.12601I
u = 0.543169 + 0.723200I
a = 1.49908 0.05473I
b = 1.86935 + 0.36653I
11.45610 1.22236I 7.56344 + 4.92814I
u = 0.543169 0.723200I
a = 1.49908 + 0.05473I
b = 1.86935 0.36653I
11.45610 + 1.22236I 7.56344 4.92814I
u = 0.027604 + 1.145960I
a = 0.355295 + 0.352119I
b = 0.039743 0.812092I
3.09023 + 2.06934I 1.83260 4.32383I
u = 0.027604 1.145960I
a = 0.355295 0.352119I
b = 0.039743 + 0.812092I
3.09023 2.06934I 1.83260 + 4.32383I
u = 0.526421 + 0.638893I
a = 2.08640 + 0.90796I
b = 1.255500 0.036319I
1.43115 0.91050I 9.59211 + 0.13114I
u = 0.526421 0.638893I
a = 2.08640 0.90796I
b = 1.255500 + 0.036319I
1.43115 + 0.91050I 9.59211 0.13114I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.576682 + 1.026770I
a = 0.29109 1.79167I
b = 1.38675 + 0.49499I
10.43120 3.28196I 7.53074 + 2.63481I
u = 0.576682 1.026770I
a = 0.29109 + 1.79167I
b = 1.38675 0.49499I
10.43120 + 3.28196I 7.53074 2.63481I
u = 0.592965 + 1.023500I
a = 1.51004 1.14114I
b = 1.28416 + 0.60245I
0.16184 + 5.53204I 6.48670 5.34088I
u = 0.592965 1.023500I
a = 1.51004 + 1.14114I
b = 1.28416 0.60245I
0.16184 5.53204I 6.48670 + 5.34088I
u = 0.665803 + 1.049490I
a = 1.347780 0.248069I
b = 0.788455 + 0.595065I
1.11207 8.86087I 7.07964 + 7.75800I
u = 0.665803 1.049490I
a = 1.347780 + 0.248069I
b = 0.788455 0.595065I
1.11207 + 8.86087I 7.07964 7.75800I
u = 0.308242 + 1.258580I
a = 0.342355 + 0.291715I
b = 0.437264 0.521691I
2.09543 + 1.81889I 7.16687 + 6.15815I
u = 0.308242 1.258580I
a = 0.342355 0.291715I
b = 0.437264 + 0.521691I
2.09543 1.81889I 7.16687 6.15815I
u = 0.476054 + 0.151252I
a = 0.30510 + 1.45204I
b = 0.398299 0.057590I
1.47105 + 1.58070I 12.37174 3.24876I
u = 0.476054 0.151252I
a = 0.30510 1.45204I
b = 0.398299 + 0.057590I
1.47105 1.58070I 12.37174 + 3.24876I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
22u
19
+ ··· + 4u + 1)(u
56
+ 81u
55
+ ··· 82u + 1)
c
2
(u
20
+ 2u
19
+ ··· 2u + 1)(u
56
+ 3u
55
+ ··· + 20u 1)
c
3
(u
20
+ 5u
18
+ ··· + 3u + 1)(u
56
+ u
55
+ ··· + 11u + 1)
c
4
(u
20
+ 2u
19
+ ··· 6u + 1)(u
56
u
55
+ ··· 5248u 1021)
c
5
(u
20
2u
19
+ ··· + 2u + 1)(u
56
+ 3u
55
+ ··· + 20u 1)
c
6
(u
20
u
19
+ ··· 4u + 1)(u
56
2u
55
+ ··· + 74u + 127)
c
7
(u
20
6u
18
+ ··· + 3u + 1)(u
56
u
55
+ ··· + 211173u 7921)
c
8
(u
20
+ 17u
19
+ ··· + 50u + 4)(u
56
+ 10u
55
+ ··· + 155830u + 215404)
c
9
(u
20
3u
19
+ ··· u + 1)(u
56
+ 16u
55
+ ··· + 815u + 53)
c
10
(u
20
+ 5u
18
+ ··· 3u + 1)(u
56
+ u
55
+ ··· + 11u + 1)
c
11
(u
20
10u
19
+ ··· + u + 1)(u
56
23u
55
+ ··· + 43u + 1)
c
12
(u
20
4u
19
+ ··· u + 1)(u
56
9u
55
+ ··· 735411u 85511)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
20
38y
19
+ ··· + 52y + 1)(y
56
201y
55
+ ··· 18994y + 1)
c
2
, c
5
(y
20
22y
19
+ ··· + 4y + 1)(y
56
81y
55
+ ··· + 82y + 1)
c
3
, c
10
(y
20
+ 10y
19
+ ··· y + 1)(y
56
+ 23y
55
+ ··· 43y + 1)
c
4
(y
20
14y
19
+ ··· + 16y + 1)
· (y
56
97y
55
+ ··· + 134121594y + 1042441)
c
6
(y
20
+ y
19
+ ··· 6y + 1)(y
56
+ 14y
55
+ ··· + 197216y + 16129)
c
7
(y
20
12y
19
+ ··· 13y + 1)
· (y
56
59y
55
+ ··· + 2248587717y + 62742241)
c
8
(y
20
19y
19
+ ··· + 116y + 16)
· (y
56
106y
55
+ ··· 2285891007612y + 46398883216)
c
9
(y
20
5y
19
+ ··· 3y + 1)(y
56
+ 12y
55
+ ··· 7449y + 2809)
c
11
(y
20
+ 6y
19
+ ··· y + 1)(y
56
+ 27y
55
+ ··· 3871y + 1)
c
12
(y
20
6y
19
+ ··· + y + 1)
· (y
56
45y
55
+ ··· 1207444021181y + 7312131121)
19