12n
0409
(K12n
0409
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 11 3 12 6 4 8 9
Solving Sequence
8,11
12 9
1,3
7 4 6 2 5 10
c
11
c
8
c
12
c
7
c
3
c
6
c
2
c
5
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.16590 × 10
32
u
31
+ 1.46189 × 10
33
u
30
+ ··· + 1.24872 × 10
34
b 5.49780 × 10
33
,
2.37033 × 10
33
u
31
+ 4.13166 × 10
33
u
30
+ ··· + 1.24872 × 10
34
a 1.71464 × 10
34
, u
32
u
31
+ ··· 2u 1i
I
u
2
= h−u
11
+ 7u
9
+ u
8
18u
7
5u
6
+ 21u
5
+ 7u
4
11u
3
2u
2
+ b + 2u,
u
12
8u
10
+ 25u
8
40u
6
+ u
5
+ 36u
4
4u
3
16u
2
+ a + 4u + 1,
u
13
8u
11
u
10
+ 25u
9
+ 6u
8
39u
7
12u
6
+ 32u
5
+ 9u
4
13u
3
2u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−6.17×10
32
u
31
+1.46×10
33
u
30
+· · ·+1.25×10
34
b5.50×10
33
, 2.37×
10
33
u
31
+4.13×10
33
u
30
+· · ·+1.25×10
34
a1.71×10
34
, u
32
u
31
+· · ·2u1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
3
=
0.189821u
31
0.330872u
30
+ ··· 5.59851u + 1.37311
0.0493778u
31
0.117071u
30
+ ··· 1.67061u + 0.440274
a
7
=
0.617113u
31
0.702924u
30
+ ··· 2.97277u 1.56588
0.255210u
31
0.230274u
30
+ ··· + 0.144769u 0.440400
a
4
=
0.369799u
31
0.365325u
30
+ ··· 1.90267u 0.395284
0.0271602u
31
0.0677895u
30
+ ··· 0.802345u 0.0663187
a
6
=
0.361904u
31
0.472651u
30
+ ··· 3.11754u 1.12548
0.255210u
31
0.230274u
30
+ ··· + 0.144769u 0.440400
a
2
=
0.661372u
31
0.805565u
30
+ ··· 5.92579u 0.0552608
0.213423u
31
0.264734u
30
+ ··· 1.41893u 0.250047
a
5
=
0.276212u
31
+ 0.368159u
30
+ ··· + 2.60106u + 0.644536
0.0127971u
31
+ 0.0681599u
30
+ ··· + 0.695590u + 0.0648329
a
10
=
0.209593u
31
0.186992u
30
+ ··· 0.405019u + 0.305269
0.0812154u
31
0.0868146u
30
+ ··· + 0.236069u 0.0317778
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.64634u
31
2.11189u
30
+ ··· + 10.8149u + 2.17341
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
32
+ 50u
31
+ ··· + 5873u + 169
c
2
, c
5
u
32
+ 2u
31
+ ··· + 149u + 13
c
3
, c
7
u
32
3u
31
+ ··· + 6u + 13
c
4
, c
10
u
32
+ u
31
+ ··· 12u 7
c
6
u
32
+ 2u
31
+ ··· + 2u 11
c
8
, c
11
, c
12
u
32
u
31
+ ··· 2u 1
c
9
u
32
+ 2u
31
+ ··· + 320u 448
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
32
130y
31
+ ··· + 545386755y + 28561
c
2
, c
5
y
32
50y
31
+ ··· 5873y + 169
c
3
, c
7
y
32
+ 25y
31
+ ··· + 484y + 169
c
4
, c
10
y
32
+ 47y
31
+ ··· + 248y + 49
c
6
y
32
+ 4y
31
+ ··· + 1272y + 121
c
8
, c
11
, c
12
y
32
21y
31
+ ··· 10y + 1
c
9
y
32
+ 114y
31
+ ··· 5478400y + 200704
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.713734 + 0.634066I
a = 1.63454 0.97058I
b = 1.090080 + 0.559990I
5.38799 + 4.75007I 2.65651 5.98480I
u = 0.713734 0.634066I
a = 1.63454 + 0.97058I
b = 1.090080 0.559990I
5.38799 4.75007I 2.65651 + 5.98480I
u = 0.780100 + 0.713092I
a = 0.578419 + 0.988520I
b = 1.43666 0.26099I
5.66767 + 1.87911I 1.97848 + 0.24857I
u = 0.780100 0.713092I
a = 0.578419 0.988520I
b = 1.43666 + 0.26099I
5.66767 1.87911I 1.97848 0.24857I
u = 0.916172 + 0.567038I
a = 1.40079 1.73118I
b = 0.403288 + 0.064579I
10.08900 + 2.24227I 4.41790 3.08560I
u = 0.916172 0.567038I
a = 1.40079 + 1.73118I
b = 0.403288 0.064579I
10.08900 2.24227I 4.41790 + 3.08560I
u = 0.922337 + 0.681295I
a = 0.214448 + 0.331259I
b = 0.63044 1.91502I
10.84610 2.63222I 0.52226 + 2.78850I
u = 0.922337 0.681295I
a = 0.214448 0.331259I
b = 0.63044 + 1.91502I
10.84610 + 2.63222I 0.52226 2.78850I
u = 1.158300 + 0.287676I
a = 0.821536 + 1.034540I
b = 1.035360 0.657528I
1.13972 4.35971I 7.21820 + 7.90515I
u = 1.158300 0.287676I
a = 0.821536 1.034540I
b = 1.035360 + 0.657528I
1.13972 + 4.35971I 7.21820 7.90515I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.040580 + 0.693377I
a = 0.989786 0.571228I
b = 1.69133 + 0.61668I
4.78339 7.28882I 3.26552 + 6.22364I
u = 1.040580 0.693377I
a = 0.989786 + 0.571228I
b = 1.69133 0.61668I
4.78339 + 7.28882I 3.26552 6.22364I
u = 1.220980 + 0.289612I
a = 0.442917 0.682280I
b = 1.28705 + 0.65034I
1.13108 + 1.76995I 6.03589 + 2.64881I
u = 1.220980 0.289612I
a = 0.442917 + 0.682280I
b = 1.28705 0.65034I
1.13108 1.76995I 6.03589 2.64881I
u = 1.110300 + 0.663239I
a = 0.717757 + 0.805432I
b = 1.148800 + 0.137989I
4.06902 + 0.32626I 2.59195 0.82777I
u = 1.110300 0.663239I
a = 0.717757 0.805432I
b = 1.148800 0.137989I
4.06902 0.32626I 2.59195 + 0.82777I
u = 1.44139 + 0.01348I
a = 0.242696 + 0.203112I
b = 0.213818 0.777820I
3.51164 2.19651I 9.32383 + 3.81660I
u = 1.44139 0.01348I
a = 0.242696 0.203112I
b = 0.213818 + 0.777820I
3.51164 + 2.19651I 9.32383 3.81660I
u = 0.08148 + 1.44948I
a = 1.114080 0.266827I
b = 1.69713 0.35935I
19.2923 4.4522I 1.21181 + 2.08819I
u = 0.08148 1.44948I
a = 1.114080 + 0.266827I
b = 1.69713 + 0.35935I
19.2923 + 4.4522I 1.21181 2.08819I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.481966 + 0.257396I
a = 0.87806 + 1.29690I
b = 0.413129 + 0.311383I
1.88542 1.30506I 1.44155 + 5.20789I
u = 0.481966 0.257396I
a = 0.87806 1.29690I
b = 0.413129 0.311383I
1.88542 + 1.30506I 1.44155 5.20789I
u = 0.286902 + 0.362783I
a = 1.65914 + 1.00541I
b = 1.32318 0.60249I
1.81266 + 1.48756I 1.92285 4.94836I
u = 0.286902 0.362783I
a = 1.65914 1.00541I
b = 1.32318 + 0.60249I
1.81266 1.48756I 1.92285 + 4.94836I
u = 1.58012
a = 0.315491
b = 0.276511
7.37313 22.2100
u = 0.409982
a = 0.726284
b = 0.225298
0.661529 15.2090
u = 1.50304 + 0.73810I
a = 0.829737 + 0.686971I
b = 1.59659 0.82818I
14.9102 + 12.0924I 0
u = 1.50304 0.73810I
a = 0.829737 0.686971I
b = 1.59659 + 0.82818I
14.9102 12.0924I 0
u = 0.172476 + 0.197273I
a = 3.03827 1.51554I
b = 0.897886 0.510199I
1.75865 + 1.40173I 0.26124 4.99544I
u = 0.172476 0.197273I
a = 3.03827 + 1.51554I
b = 0.897886 + 0.510199I
1.75865 1.40173I 0.26124 + 4.99544I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63318 + 0.69080I
a = 0.329691 0.659740I
b = 1.406370 + 0.131580I
14.0115 3.2110I 0
u = 1.63318 0.69080I
a = 0.329691 + 0.659740I
b = 1.406370 0.131580I
14.0115 + 3.2110I 0
8
II.
I
u
2
= h−u
11
+7u
9
+· · ·+b+2u, u
12
8u
10
+· · ·+a+1, u
13
8u
11
+· · ·+2u+1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
3
=
u
12
+ 8u
10
25u
8
+ 40u
6
u
5
36u
4
+ 4u
3
+ 16u
2
4u 1
u
11
7u
9
u
8
+ 18u
7
+ 5u
6
21u
5
7u
4
+ 11u
3
+ 2u
2
2u
a
7
=
u
12
+ 7u
10
+ ··· + 5u 3
u
12
+ 7u
10
+ ··· + u 1
a
4
=
2u
12
u
11
+ ··· + u + 4
u
12
7u
10
u
9
+ 19u
8
+ 5u
7
26u
6
7u
5
+ 19u
4
+ 2u
3
7u
2
+ u + 1
a
6
=
u
9
6u
7
+ 12u
5
10u
3
+ u
2
+ 4u 2
u
12
+ 7u
10
+ ··· + u 1
a
2
=
u
8
+ 6u
6
12u
4
+ 8u
2
1
u
11
7u
9
u
8
+ 18u
7
+ 5u
6
21u
5
7u
4
+ 11u
3
+ 3u
2
2u 1
a
5
=
u
11
7u
9
+ 18u
7
20u
5
+ 7u
3
+ u
2
+ 2u 2
u
8
+ 5u
6
8u
4
+ 5u
2
1
a
10
=
2u
12
u
11
+ ··· + 7u + 2
u
3
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
12
2u
11
+ 16u
10
+ 15u
9
47u
8
42u
7
+ 64u
6
+ 54u
5
46u
4
29u
3
+ 17u
2
+ 2u + 5
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
13u
12
+ ··· + 7u 1
c
2
u
13
+ 3u
12
+ ··· 3u 1
c
3
u
13
+ 3u
11
+ ··· + 6u 1
c
4
u
13
+ 8u
11
+ 24u
9
+ u
8
+ 33u
7
+ 4u
6
+ 20u
5
+ 5u
4
+ 5u
3
+ u
2
+ 2u 1
c
5
u
13
3u
12
+ ··· 3u + 1
c
6
u
13
+ u
12
u
11
u
10
2u
7
9u
6
2u
5
7u
4
3u
3
3u
2
1
c
7
u
13
+ 3u
11
+ ··· + 6u + 1
c
8
u
13
8u
11
+ ··· + 2u 1
c
9
u
13
+ u
12
+ ··· u + 1
c
10
u
13
+ 8u
11
+ 24u
9
u
8
+ 33u
7
4u
6
+ 20u
5
5u
4
+ 5u
3
u
2
+ 2u + 1
c
11
, c
12
u
13
8u
11
+ ··· + 2u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
21y
12
+ ··· 21y 1
c
2
, c
5
y
13
13y
12
+ ··· + 7y 1
c
3
, c
7
y
13
+ 6y
12
+ ··· + 22y 1
c
4
, c
10
y
13
+ 16y
12
+ ··· + 6y 1
c
6
y
13
3y
12
+ ··· 6y 1
c
8
, c
11
, c
12
y
13
16y
12
+ ··· + 8y 1
c
9
y
13
+ 23y
12
+ ··· + 15y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.001170 + 0.552293I
a = 0.875628 + 0.971745I
b = 0.230247 0.841237I
9.35275 2.09354I 7.20188 + 0.46928I
u = 1.001170 0.552293I
a = 0.875628 0.971745I
b = 0.230247 + 0.841237I
9.35275 + 2.09354I 7.20188 0.46928I
u = 1.229660 + 0.182594I
a = 0.338886 0.829343I
b = 1.11117 + 1.04233I
0.99221 + 2.74184I 3.93696 4.65266I
u = 1.229660 0.182594I
a = 0.338886 + 0.829343I
b = 1.11117 1.04233I
0.99221 2.74184I 3.93696 + 4.65266I
u = 1.298440 + 0.119369I
a = 0.766018 + 1.016630I
b = 1.227350 0.566412I
1.21383 4.55409I 3.28508 + 3.98345I
u = 1.298440 0.119369I
a = 0.766018 1.016630I
b = 1.227350 + 0.566412I
1.21383 + 4.55409I 3.28508 3.98345I
u = 0.572766 + 0.333551I
a = 0.953439 + 0.550346I
b = 1.031350 + 0.503157I
1.38489 0.74935I 5.96891 3.49027I
u = 0.572766 0.333551I
a = 0.953439 0.550346I
b = 1.031350 0.503157I
1.38489 + 0.74935I 5.96891 + 3.49027I
u = 0.294410 + 0.263773I
a = 1.38207 3.00576I
b = 0.992614 0.156850I
4.69980 + 3.16875I 5.12846 3.30315I
u = 0.294410 0.263773I
a = 1.38207 + 3.00576I
b = 0.992614 + 0.156850I
4.69980 3.16875I 5.12846 + 3.30315I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.60888 + 0.07753I
a = 0.048946 0.541592I
b = 0.616598 + 0.097202I
2.26514 1.76839I 2.54626 + 1.07577I
u = 1.60888 0.07753I
a = 0.048946 + 0.541592I
b = 0.616598 0.097202I
2.26514 + 1.76839I 2.54626 1.07577I
u = 1.63455
a = 0.114567
b = 0.598176
7.04862 3.13510
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
13
13u
12
+ ··· + 7u 1)(u
32
+ 50u
31
+ ··· + 5873u + 169)
c
2
(u
13
+ 3u
12
+ ··· 3u 1)(u
32
+ 2u
31
+ ··· + 149u + 13)
c
3
(u
13
+ 3u
11
+ ··· + 6u 1)(u
32
3u
31
+ ··· + 6u + 13)
c
4
(u
13
+ 8u
11
+ 24u
9
+ u
8
+ 33u
7
+ 4u
6
+ 20u
5
+ 5u
4
+ 5u
3
+ u
2
+ 2u 1)
· (u
32
+ u
31
+ ··· 12u 7)
c
5
(u
13
3u
12
+ ··· 3u + 1)(u
32
+ 2u
31
+ ··· + 149u + 13)
c
6
(u
13
+ u
12
u
11
u
10
2u
7
9u
6
2u
5
7u
4
3u
3
3u
2
1)
· (u
32
+ 2u
31
+ ··· + 2u 11)
c
7
(u
13
+ 3u
11
+ ··· + 6u + 1)(u
32
3u
31
+ ··· + 6u + 13)
c
8
(u
13
8u
11
+ ··· + 2u 1)(u
32
u
31
+ ··· 2u 1)
c
9
(u
13
+ u
12
+ ··· u + 1)(u
32
+ 2u
31
+ ··· + 320u 448)
c
10
(u
13
+ 8u
11
+ 24u
9
u
8
+ 33u
7
4u
6
+ 20u
5
5u
4
+ 5u
3
u
2
+ 2u + 1)
· (u
32
+ u
31
+ ··· 12u 7)
c
11
, c
12
(u
13
8u
11
+ ··· + 2u + 1)(u
32
u
31
+ ··· 2u 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
13
21y
12
+ ··· 21y 1)
· (y
32
130y
31
+ ··· + 545386755y + 28561)
c
2
, c
5
(y
13
13y
12
+ ··· + 7y 1)(y
32
50y
31
+ ··· 5873y + 169)
c
3
, c
7
(y
13
+ 6y
12
+ ··· + 22y 1)(y
32
+ 25y
31
+ ··· + 484y + 169)
c
4
, c
10
(y
13
+ 16y
12
+ ··· + 6y 1)(y
32
+ 47y
31
+ ··· + 248y + 49)
c
6
(y
13
3y
12
+ ··· 6y 1)(y
32
+ 4y
31
+ ··· + 1272y + 121)
c
8
, c
11
, c
12
(y
13
16y
12
+ ··· + 8y 1)(y
32
21y
31
+ ··· 10y + 1)
c
9
(y
13
+ 23y
12
+ ··· + 15y 1)
· (y
32
+ 114y
31
+ ··· 5478400y + 200704)
15