12n
0410
(K12n
0410
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 9 4 12 5 7 8 9
Solving Sequence
5,9 10,12
1 4 8 3 2 7 6 11
c
9
c
12
c
4
c
8
c
3
c
1
c
7
c
6
c
11
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.43647 × 10
106
u
70
+ 9.27917 × 10
106
u
69
+ ··· + 4.05492 × 10
107
b 2.66090 × 10
107
,
2.33553 × 10
108
u
70
2.92909 × 10
108
u
69
+ ··· + 4.05492 × 10
107
a + 1.64345 × 10
109
,
u
71
+ u
70
+ ··· 18u + 1i
I
u
2
= hu
2
+ b + 1, u
15
+ u
14
+ ··· + a 4,
u
16
+ 10u
14
+ 40u
12
+ u
11
+ 82u
10
+ 7u
9
+ 92u
8
+ 18u
7
+ 58u
6
+ 21u
5
+ 25u
4
+ 11u
3
+ 10u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.44 × 10
106
u
70
+ 9.28 × 10
106
u
69
+ · · · + 4.05 × 10
107
b 2.66 ×
10
107
, 2.34 × 10
108
u
70
2.93 × 10
108
u
69
+ · · · + 4.05 × 10
107
a + 1.64 ×
10
109
, u
71
+ u
70
+ · · · 18u + 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
12
=
5.75975u
70
+ 7.22354u
69
+ ··· + 413.326u 40.5299
0.0847481u
70
0.228837u
69
+ ··· 1.63551u + 0.656214
a
1
=
5.84450u
70
+ 6.99470u
69
+ ··· + 411.690u 39.8736
0.0847481u
70
0.228837u
69
+ ··· 1.63551u + 0.656214
a
4
=
u
u
3
+ u
a
8
=
3.49699u
70
+ 4.19855u
69
+ ··· + 350.333u 33.4246
0.239548u
70
+ 0.356147u
69
+ ··· + 3.79911u + 0.0294177
a
3
=
0.732278u
70
+ 1.28940u
69
+ ··· + 57.6526u 22.5177
0.0601700u
70
0.435875u
69
+ ··· + 18.4320u 2.09649
a
2
=
3.03287u
70
3.14673u
69
+ ··· 288.328u + 33.4675
0.443733u
70
+ 0.847315u
69
+ ··· 10.9879u + 0.729411
a
7
=
3.33586u
70
+ 3.74761u
69
+ ··· + 351.145u 33.2572
0.284126u
70
+ 0.525249u
69
+ ··· 0.443567u + 0.486594
a
6
=
3.61999u
70
+ 4.27286u
69
+ ··· + 350.702u 32.7706
0.284126u
70
+ 0.525249u
69
+ ··· 0.443567u + 0.486594
a
11
=
3.08919u
70
+ 3.79307u
69
+ ··· + 183.569u 16.3818
0.264976u
70
0.884934u
69
+ ··· 4.44816u + 0.538795
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.714658u
70
+ 0.411160u
69
+ ··· 172.611u + 3.21683
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
71
+ 37u
70
+ ··· + 39u + 1
c
2
, c
5
u
71
+ u
70
+ ··· 5u + 1
c
3
, c
7
u
71
+ 2u
70
+ ··· + 938u + 419
c
4
, c
9
u
71
+ u
70
+ ··· 18u + 1
c
6
u
71
11u
70
+ ··· + 45238u + 33013
c
8
, c
11
, c
12
u
71
3u
70
+ ··· + 182u + 73
c
10
u
71
+ 3u
70
+ ··· 1366u + 113
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
71
+ 3y
70
+ ··· + 75y 1
c
2
, c
5
y
71
37y
70
+ ··· + 39y 1
c
3
, c
7
y
71
+ 32y
70
+ ··· 3750944y 175561
c
4
, c
9
y
71
+ 63y
70
+ ··· + 108y 1
c
6
y
71
9y
70
+ ··· + 48618179848y 1089858169
c
8
, c
11
, c
12
y
71
29y
70
+ ··· + 317240y 5329
c
10
y
71
y
70
+ ··· + 908846y 12769
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.215895 + 0.983718I
a = 0.589334 0.165404I
b = 0.879742 0.511318I
1.75447 + 1.33869I 0
u = 0.215895 0.983718I
a = 0.589334 + 0.165404I
b = 0.879742 + 0.511318I
1.75447 1.33869I 0
u = 1.034460 + 0.273032I
a = 0.310181 + 1.214850I
b = 1.25991 + 0.78950I
3.60320 + 10.88280I 0
u = 1.034460 0.273032I
a = 0.310181 1.214850I
b = 1.25991 0.78950I
3.60320 10.88280I 0
u = 0.863903 + 0.285907I
a = 0.419083 + 0.810149I
b = 0.502982 + 1.144460I
5.98210 3.93114I 10.12837 + 4.65462I
u = 0.863903 0.285907I
a = 0.419083 0.810149I
b = 0.502982 1.144460I
5.98210 + 3.93114I 10.12837 4.65462I
u = 0.891768 + 0.070118I
a = 0.15503 1.61433I
b = 0.865255 0.883952I
5.06777 1.72842I 9.03248 + 1.95766I
u = 0.891768 0.070118I
a = 0.15503 + 1.61433I
b = 0.865255 + 0.883952I
5.06777 + 1.72842I 9.03248 1.95766I
u = 0.858375 + 0.211623I
a = 0.41891 1.51444I
b = 1.096520 0.693922I
0.51051 5.75064I 3.89282 + 5.23747I
u = 0.858375 0.211623I
a = 0.41891 + 1.51444I
b = 1.096520 + 0.693922I
0.51051 + 5.75064I 3.89282 5.23747I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.495327 + 1.001070I
a = 0.956532 + 0.720660I
b = 0.499506 + 0.873457I
3.81338 0.91720I 0
u = 0.495327 1.001070I
a = 0.956532 0.720660I
b = 0.499506 0.873457I
3.81338 + 0.91720I 0
u = 0.852063 + 0.003332I
a = 0.570898 0.952541I
b = 0.941084 0.848655I
4.83336 4.67682I 8.91178 + 3.62804I
u = 0.852063 0.003332I
a = 0.570898 + 0.952541I
b = 0.941084 + 0.848655I
4.83336 + 4.67682I 8.91178 3.62804I
u = 0.728501 + 0.383628I
a = 0.609475 + 0.530243I
b = 1.021450 0.201318I
1.66148 + 1.60219I 0.85852 4.44801I
u = 0.728501 0.383628I
a = 0.609475 0.530243I
b = 1.021450 + 0.201318I
1.66148 1.60219I 0.85852 + 4.44801I
u = 0.801396 + 0.186918I
a = 0.435494 + 0.875125I
b = 0.579792 + 0.108548I
0.08587 1.45375I 4.06625 + 0.26026I
u = 0.801396 0.186918I
a = 0.435494 0.875125I
b = 0.579792 0.108548I
0.08587 + 1.45375I 4.06625 0.26026I
u = 0.029612 + 1.179580I
a = 0.715627 + 0.669083I
b = 1.015610 0.624913I
4.02651 1.18106I 0
u = 0.029612 1.179580I
a = 0.715627 0.669083I
b = 1.015610 + 0.624913I
4.02651 + 1.18106I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.044105 + 1.211070I
a = 2.72874 0.40673I
b = 0.734871 0.897217I
2.77599 4.56849I 0
u = 0.044105 1.211070I
a = 2.72874 + 0.40673I
b = 0.734871 + 0.897217I
2.77599 + 4.56849I 0
u = 0.373923 + 1.168140I
a = 0.735197 + 0.107279I
b = 0.917139 0.074511I
4.27301 5.82007I 0
u = 0.373923 1.168140I
a = 0.735197 0.107279I
b = 0.917139 + 0.074511I
4.27301 + 5.82007I 0
u = 0.310509 + 1.196830I
a = 0.839804 0.739127I
b = 0.785280 0.707355I
1.34885 + 3.63857I 0
u = 0.310509 1.196830I
a = 0.839804 + 0.739127I
b = 0.785280 + 0.707355I
1.34885 3.63857I 0
u = 0.075611 + 1.234620I
a = 5.12968 + 2.04707I
b = 0.673053 + 0.192726I
7.70644 3.86757I 0
u = 0.075611 1.234620I
a = 5.12968 2.04707I
b = 0.673053 0.192726I
7.70644 + 3.86757I 0
u = 0.410342 + 1.186330I
a = 1.72235 + 1.94541I
b = 0.608459 + 0.094132I
2.97939 + 5.92999I 0
u = 0.410342 1.186330I
a = 1.72235 1.94541I
b = 0.608459 0.094132I
2.97939 5.92999I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.729742 + 0.114637I
a = 0.618046 0.750040I
b = 0.630374 0.759705I
1.95583 + 0.14817I 7.00132 0.69470I
u = 0.729742 0.114637I
a = 0.618046 + 0.750040I
b = 0.630374 + 0.759705I
1.95583 0.14817I 7.00132 + 0.69470I
u = 0.021725 + 1.263670I
a = 0.677026 0.120394I
b = 0.752422 + 0.007514I
8.01619 + 2.99746I 0
u = 0.021725 1.263670I
a = 0.677026 + 0.120394I
b = 0.752422 0.007514I
8.01619 2.99746I 0
u = 0.413858 + 1.213910I
a = 1.27530 1.84827I
b = 0.805605 0.898461I
1.55000 + 6.39536I 0
u = 0.413858 1.213910I
a = 1.27530 + 1.84827I
b = 0.805605 + 0.898461I
1.55000 6.39536I 0
u = 0.158281 + 1.275040I
a = 2.74022 0.73963I
b = 0.811606 + 0.350669I
6.58304 0.58218I 0
u = 0.158281 1.275040I
a = 2.74022 + 0.73963I
b = 0.811606 0.350669I
6.58304 + 0.58218I 0
u = 0.790440 + 1.070780I
a = 0.367717 0.165936I
b = 1.28280 + 0.61070I
1.27848 4.71003I 0
u = 0.790440 1.070780I
a = 0.367717 + 0.165936I
b = 1.28280 0.61070I
1.27848 + 4.71003I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.384604 + 1.283090I
a = 0.905704 + 0.769999I
b = 0.892660 + 0.805268I
0.82831 9.10842I 0
u = 0.384604 1.283090I
a = 0.905704 0.769999I
b = 0.892660 0.805268I
0.82831 + 9.10842I 0
u = 0.411196 + 1.277040I
a = 0.287177 + 0.546454I
b = 1.036780 0.878537I
0.870786 + 0.150985I 0
u = 0.411196 1.277040I
a = 0.287177 0.546454I
b = 1.036780 + 0.878537I
0.870786 0.150985I 0
u = 0.062315 + 1.356300I
a = 0.536885 0.568354I
b = 0.622978 + 0.855958I
4.73209 + 4.54811I 0
u = 0.062315 1.356300I
a = 0.536885 + 0.568354I
b = 0.622978 0.855958I
4.73209 4.54811I 0
u = 0.271944 + 1.345690I
a = 0.490299 0.243669I
b = 0.495860 0.020177I
4.81607 + 2.25039I 0
u = 0.271944 1.345690I
a = 0.490299 + 0.243669I
b = 0.495860 + 0.020177I
4.81607 2.25039I 0
u = 0.182403 + 0.589273I
a = 0.996728 0.100964I
b = 0.991109 0.385570I
1.70326 + 1.36799I 0.40449 3.56103I
u = 0.182403 0.589273I
a = 0.996728 + 0.100964I
b = 0.991109 + 0.385570I
1.70326 1.36799I 0.40449 + 3.56103I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.431353 + 1.324400I
a = 0.293265 + 0.052341I
b = 0.943113 + 0.822147I
0.70979 + 3.01801I 0
u = 0.431353 1.324400I
a = 0.293265 0.052341I
b = 0.943113 0.822147I
0.70979 3.01801I 0
u = 0.297751 + 1.379490I
a = 0.354498 0.522063I
b = 0.529414 + 0.965808I
2.81600 + 3.85009I 0
u = 0.297751 1.379490I
a = 0.354498 + 0.522063I
b = 0.529414 0.965808I
2.81600 3.85009I 0
u = 0.072525 + 0.577336I
a = 1.009780 0.310556I
b = 1.024930 0.366527I
1.70099 + 1.36936I 0.45558 4.27250I
u = 0.072525 0.577336I
a = 1.009780 + 0.310556I
b = 1.024930 + 0.366527I
1.70099 1.36936I 0.45558 + 4.27250I
u = 0.38135 + 1.40084I
a = 1.72461 + 1.25646I
b = 1.136280 + 0.778925I
4.58064 10.24330I 0
u = 0.38135 1.40084I
a = 1.72461 1.25646I
b = 1.136280 0.778925I
4.58064 + 10.24330I 0
u = 0.35642 + 1.47308I
a = 0.357872 + 0.562711I
b = 0.58989 1.37575I
0.32317 8.36888I 0
u = 0.35642 1.47308I
a = 0.357872 0.562711I
b = 0.58989 + 1.37575I
0.32317 + 8.36888I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.44180 + 1.45915I
a = 1.55032 1.07079I
b = 1.26177 0.88192I
1.8628 + 16.1602I 0
u = 0.44180 1.45915I
a = 1.55032 + 1.07079I
b = 1.26177 + 0.88192I
1.8628 16.1602I 0
u = 0.384489
a = 0.931181
b = 0.216711
0.795110 12.9180
u = 0.01278 + 1.63519I
a = 1.81847 0.01243I
b = 1.95257 + 0.19361I
9.71665 + 1.57100I 0
u = 0.01278 1.63519I
a = 1.81847 + 0.01243I
b = 1.95257 0.19361I
9.71665 1.57100I 0
u = 0.07124 + 1.74068I
a = 1.55530 0.11713I
b = 1.62577 0.01058I
10.11340 1.78495I 0
u = 0.07124 1.74068I
a = 1.55530 + 0.11713I
b = 1.62577 + 0.01058I
10.11340 + 1.78495I 0
u = 0.018862 + 0.200440I
a = 3.71179 0.53258I
b = 0.727811 0.911451I
0.32381 + 4.17151I 4.56463 9.46069I
u = 0.018862 0.200440I
a = 3.71179 + 0.53258I
b = 0.727811 + 0.911451I
0.32381 4.17151I 4.56463 + 9.46069I
u = 0.0994581 + 0.0263391I
a = 4.2481 + 18.4423I
b = 0.724058 + 0.102943I
4.07198 + 3.05309I 15.3128 6.7632I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0994581 0.0263391I
a = 4.2481 18.4423I
b = 0.724058 0.102943I
4.07198 3.05309I 15.3128 + 6.7632I
12
II. I
u
2
= hu
2
+ b + 1, u
15
+ u
14
+ · · · + a 4, u
16
+ 10u
14
+ · · · + 2u + 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
12
=
u
15
u
14
+ ··· 5u + 4
u
2
1
a
1
=
u
15
u
14
+ ··· 5u + 3
u
2
1
a
4
=
u
u
3
+ u
a
8
=
u
15
2u
14
+ ··· + 2u 4
u
4
+ 2u
2
+ 1
a
3
=
3u
15
+ 28u
13
+ ··· + 17u + 5
u
13
8u
11
+ ··· 3u 1
a
2
=
2u
15
+ 19u
13
+ ··· + 12u
2
+ 10u
u
14
u
13
+ ··· + 2u
2
u
a
7
=
u
15
u
14
+ ··· + 3u 4
u
14
8u
12
+ ··· 3u
2
u
a
6
=
u
15
2u
14
+ ··· + 2u 4
u
14
8u
12
+ ··· 3u
2
u
a
11
=
u
14
8u
12
+ ··· 2u
2
+ 2
u
6
+ 3u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
15
+ 4u
14
21u
13
+ 35u
12
88u
11
+ 121u
10
184u
9
+
211u
8
196u
7
+ 193u
6
95u
5
+ 87u
4
14u
3
+ 25u
2
2u + 10
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
8u
15
+ ··· 11u + 1
c
2
u
16
4u
14
+ ··· + u + 1
c
3
u
16
+ u
15
+ ··· + 6u
2
+ 1
c
4
u
16
+ 10u
14
+ ··· 2u + 1
c
5
u
16
4u
14
+ ··· u + 1
c
6
u
16
+ 4u
15
+ ··· + 8u + 1
c
7
u
16
u
15
+ ··· + 6u
2
+ 1
c
8
u
16
4u
15
+ ··· 4u + 1
c
9
u
16
+ 10u
14
+ ··· + 2u + 1
c
10
u
16
+ 2u
14
+ ··· + 6u + 1
c
11
, c
12
u
16
+ 4u
15
+ ··· + 4u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 8y
15
+ ··· + y + 1
c
2
, c
5
y
16
8y
15
+ ··· 11y + 1
c
3
, c
7
y
16
+ 13y
15
+ ··· + 12y + 1
c
4
, c
9
y
16
+ 20y
15
+ ··· + 16y + 1
c
6
y
16
+ 8y
15
+ ··· 20y + 1
c
8
, c
11
, c
12
y
16
16y
15
+ ··· 12y + 1
c
10
y
16
+ 4y
15
+ ··· 10y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.538323 + 0.609436I
a = 0.301986 0.587035I
b = 0.918380 0.656147I
0.33171 + 3.10177I 4.27402 2.35012I
u = 0.538323 0.609436I
a = 0.301986 + 0.587035I
b = 0.918380 + 0.656147I
0.33171 3.10177I 4.27402 + 2.35012I
u = 0.048339 + 1.222850I
a = 1.81741 1.11259I
b = 0.493024 + 0.118223I
7.19096 + 3.42244I 3.10678 2.43444I
u = 0.048339 1.222850I
a = 1.81741 + 1.11259I
b = 0.493024 0.118223I
7.19096 3.42244I 3.10678 + 2.43444I
u = 0.291351 + 1.201680I
a = 1.87567 0.05805I
b = 0.359153 0.700221I
1.84258 6.14957I 5.00852 + 7.34248I
u = 0.291351 1.201680I
a = 1.87567 + 0.05805I
b = 0.359153 + 0.700221I
1.84258 + 6.14957I 5.00852 7.34248I
u = 0.177579 + 1.300220I
a = 0.693391 0.115475I
b = 0.659034 + 0.461783I
4.53158 + 3.04680I 2.03030 5.70697I
u = 0.177579 1.300220I
a = 0.693391 + 0.115475I
b = 0.659034 0.461783I
4.53158 3.04680I 2.03030 + 5.70697I
u = 0.470847 + 0.357752I
a = 0.315886 0.653261I
b = 1.093710 + 0.336893I
1.130760 0.806623I 6.80428 2.97898I
u = 0.470847 0.357752I
a = 0.315886 + 0.653261I
b = 1.093710 0.336893I
1.130760 + 0.806623I 6.80428 + 2.97898I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.01876 + 1.58439I
a = 1.99295 + 0.09965I
b = 1.50993 + 0.05944I
11.46500 2.59376I 3.82711 + 3.90143I
u = 0.01876 1.58439I
a = 1.99295 0.09965I
b = 1.50993 0.05944I
11.46500 + 2.59376I 3.82711 3.90143I
u = 0.076930 + 0.383712I
a = 4.77737 0.98552I
b = 0.858683 + 0.059038I
4.38379 2.94039I 7.82295 1.05341I
u = 0.076930 0.383712I
a = 4.77737 + 0.98552I
b = 0.858683 0.059038I
4.38379 + 2.94039I 7.82295 + 1.05341I
u = 0.03722 + 1.68849I
a = 1.65065 + 0.07468I
b = 1.84963 + 0.12569I
9.26542 + 1.37057I 9.92616 + 2.04030I
u = 0.03722 1.68849I
a = 1.65065 0.07468I
b = 1.84963 0.12569I
9.26542 1.37057I 9.92616 2.04030I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
16
8u
15
+ ··· 11u + 1)(u
71
+ 37u
70
+ ··· + 39u + 1)
c
2
(u
16
4u
14
+ ··· + u + 1)(u
71
+ u
70
+ ··· 5u + 1)
c
3
(u
16
+ u
15
+ ··· + 6u
2
+ 1)(u
71
+ 2u
70
+ ··· + 938u + 419)
c
4
(u
16
+ 10u
14
+ ··· 2u + 1)(u
71
+ u
70
+ ··· 18u + 1)
c
5
(u
16
4u
14
+ ··· u + 1)(u
71
+ u
70
+ ··· 5u + 1)
c
6
(u
16
+ 4u
15
+ ··· + 8u + 1)(u
71
11u
70
+ ··· + 45238u + 33013)
c
7
(u
16
u
15
+ ··· + 6u
2
+ 1)(u
71
+ 2u
70
+ ··· + 938u + 419)
c
8
(u
16
4u
15
+ ··· 4u + 1)(u
71
3u
70
+ ··· + 182u + 73)
c
9
(u
16
+ 10u
14
+ ··· + 2u + 1)(u
71
+ u
70
+ ··· 18u + 1)
c
10
(u
16
+ 2u
14
+ ··· + 6u + 1)(u
71
+ 3u
70
+ ··· 1366u + 113)
c
11
, c
12
(u
16
+ 4u
15
+ ··· + 4u + 1)(u
71
3u
70
+ ··· + 182u + 73)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
16
+ 8y
15
+ ··· + y + 1)(y
71
+ 3y
70
+ ··· + 75y 1)
c
2
, c
5
(y
16
8y
15
+ ··· 11y + 1)(y
71
37y
70
+ ··· + 39y 1)
c
3
, c
7
(y
16
+ 13y
15
+ ··· + 12y + 1)
· (y
71
+ 32y
70
+ ··· 3750944y 175561)
c
4
, c
9
(y
16
+ 20y
15
+ ··· + 16y + 1)(y
71
+ 63y
70
+ ··· + 108y 1)
c
6
(y
16
+ 8y
15
+ ··· 20y + 1)
· (y
71
9y
70
+ ··· + 48618179848y 1089858169)
c
8
, c
11
, c
12
(y
16
16y
15
+ ··· 12y + 1)(y
71
29y
70
+ ··· + 317240y 5329)
c
10
(y
16
+ 4y
15
+ ··· 10y + 1)(y
71
y
70
+ ··· + 908846y 12769)
19