10
165
(K10n
37
)
A knot diagram
1
Linearized knot diagam
5 7 9 2 8 9 4 1 4 6
Solving Sequence
1,5 2,8
6 9 4 3 7 10
c
1
c
5
c
8
c
4
c
3
c
7
c
10
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
12
+ 5u
11
+ 16u
10
+ 34u
9
+ 53u
8
+ 61u
7
+ 48u
6
+ 20u
5
9u
4
24u
3
20u
2
+ b 11u 3,
3u
12
13u
11
41u
10
85u
9
136u
8
167u
7
148u
6
90u
5
5u
4
+ 54u
3
+ 63u
2
+ 2a + 50u + 14,
u
13
+ 5u
12
+ 17u
11
+ 39u
10
+ 68u
9
+ 91u
8
+ 90u
7
+ 62u
6
+ 15u
5
24u
4
37u
3
30u
2
12u 2i
I
u
2
= h−u
3
u
2
+ b u 1, u
5
+ 2u
4
+ 4u
3
+ 3u
2
+ 2a + 3u + 2, u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 5u
2
+ 4u + 2i
I
u
3
= h−u
5
+ u
4
2u
3
+ au + u
2
+ b u + 1,
u
5
a 2u
4
a 2u
5
+ 4u
3
a + 3u
4
4u
2
a 7u
3
+ a
2
+ 3au + 7u
2
2a 6u + 4,
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
* 3 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
12
+5u
11
+· · ·+b3, 3u
12
13u
11
+· · ·+2a+14, u
13
+5u
12
+· · ·12u2i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
8
=
3
2
u
12
+
13
2
u
11
+ ··· 25u 7
u
12
5u
11
+ ··· + 11u + 3
a
6
=
3
2
u
12
+
13
2
u
11
+ ··· 20u 4
u
12
5u
11
+ ··· + 15u + 3
a
9
=
1
2
u
12
+
3
2
u
11
+ ··· 14u 4
u
12
5u
11
+ ··· + 11u + 3
a
4
=
u
u
3
+ u
a
3
=
1
2
u
12
+
5
2
u
11
+ ··· 4u 1
u
12
+ 4u
11
+ ··· 5u 1
a
7
=
1
2
u
12
+
5
2
u
11
+ ··· 26u 7
u
12
4u
11
+ ··· + 2u + 1
a
10
=
1
2
u
12
+
3
2
u
11
+ ··· 13u 4
u
12
5u
11
+ ··· + 10u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5u
12
+24u
11
+78u
10
+170u
9
+277u
8
+342u
7
+296u
6
+161u
5
15u
4
125u
3
126u
2
82u16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
13
+ 5u
12
+ ··· 12u 2
c
2
, c
3
, c
9
u
13
+ 10u
11
+ ··· + 2u 1
c
5
, c
8
u
13
+ u
12
+ ··· + 5u 1
c
6
u
13
8u
12
+ ··· + 18u 10
c
7
u
13
u
12
+ ··· + 20u 7
c
10
u
13
+ 12u
12
+ ··· 288u 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
13
+ 9y
12
+ ··· + 24y 4
c
2
, c
3
, c
9
y
13
+ 20y
12
+ ··· 10y 1
c
5
, c
8
y
13
+ 7y
12
+ ··· + 23y 1
c
6
y
13
16y
12
+ ··· + 1284y 100
c
7
y
13
+ 13y
12
+ ··· + 64y 49
c
10
y
13
2y
12
+ ··· + 1024y 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.152860 + 0.170520I
a = 0.717142 0.770562I
b = 0.695367 + 1.010640I
6.75019 5.87953I 3.71309 + 4.79533I
u = 1.152860 0.170520I
a = 0.717142 + 0.770562I
b = 0.695367 1.010640I
6.75019 + 5.87953I 3.71309 4.79533I
u = 0.034812 + 1.171400I
a = 0.739139 + 0.284263I
b = 0.358718 + 0.855935I
3.39029 + 0.96735I 2.31477 3.00161I
u = 0.034812 1.171400I
a = 0.739139 0.284263I
b = 0.358718 0.855935I
3.39029 0.96735I 2.31477 + 3.00161I
u = 0.175701 + 1.175030I
a = 1.067580 0.632688I
b = 0.93100 1.14328I
2.32319 3.89550I 2.16216 + 1.95849I
u = 0.175701 1.175030I
a = 1.067580 + 0.632688I
b = 0.93100 + 1.14328I
2.32319 + 3.89550I 2.16216 1.95849I
u = 0.773330
a = 0.244870
b = 0.189365
1.09959 6.33360
u = 0.48596 + 1.43258I
a = 1.058960 + 0.295073I
b = 0.93732 + 1.37365I
11.8216 11.6031I 1.77641 + 5.73851I
u = 0.48596 1.43258I
a = 1.058960 0.295073I
b = 0.93732 1.37365I
11.8216 + 11.6031I 1.77641 5.73851I
u = 0.363253 + 0.187651I
a = 0.56911 2.04054I
b = 0.589641 + 0.634441I
0.57483 + 1.68891I 3.43240 5.42565I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.363253 0.187651I
a = 0.56911 + 2.04054I
b = 0.589641 0.634441I
0.57483 1.68891I 3.43240 + 5.42565I
u = 0.67408 + 1.45370I
a = 0.500985 + 0.317553I
b = 0.123919 0.942337I
10.56050 0.87235I 1.56565 + 0.23907I
u = 0.67408 1.45370I
a = 0.500985 0.317553I
b = 0.123919 + 0.942337I
10.56050 + 0.87235I 1.56565 0.23907I
6
II. I
u
2
= h−u
3
u
2
+ b u 1, u
5
+ 2u
4
+ 4u
3
+ 3u
2
+ 2a + 3u + 2, u
6
+
2u
5
+ 4u
4
+ 5u
3
+ 5u
2
+ 4u + 2i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
8
=
1
2
u
5
u
4
2u
3
3
2
u
2
3
2
u 1
u
3
+ u
2
+ u + 1
a
6
=
1
2
u
5
+ u
4
+ u
3
+
3
2
u
2
+
1
2
u
u
4
u
3
2u
2
u 1
a
9
=
1
2
u
5
u
4
u
3
1
2
u
2
1
2
u
u
3
+ u
2
+ u + 1
a
4
=
u
u
3
+ u
a
3
=
1
2
u
5
+ 2u
4
+ 3u
3
+
7
2
u
2
+
3
2
u + 1
u
5
+ 2u
4
+ 4u
3
+ 3u
2
+ 3u + 1
a
7
=
1
2
u
5
+
3
2
u
2
+
3
2
u + 1
u
3
+ u
2
+ 2u + 1
a
10
=
1
2
u
5
u
4
2u
3
3
2
u
2
3
2
u
u
5
+ u
4
+ 3u
3
+ 2u
2
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
4
+ 4u
3
+ 9u
2
+ 6u + 10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 5u
2
+ 4u + 2
c
2
, c
3
, c
9
u
6
+ 2u
4
2u
2
+ 1
c
4
u
6
2u
5
+ 4u
4
5u
3
+ 5u
2
4u + 2
c
5
, c
8
, c
10
u
6
+ u
5
2u
3
+ u + 1
c
6
u
6
5u
5
+ 10u
4
12u
3
+ 11u
2
6u + 2
c
7
u
6
+ u
5
+ 3u
4
u
3
+ u
2
2u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
6
+ 4y
5
+ 6y
4
+ 3y
3
+ y
2
+ 4y + 4
c
2
, c
3
, c
9
(y
3
+ 2y
2
2y + 1)
2
c
5
, c
8
, c
10
y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1
c
6
y
6
5y
5
+ 2y
4
+ 20y
3
+ 17y
2
+ 8y + 4
c
7
y
6
+ 5y
5
+ 13y
4
+ 11y
3
+ 3y
2
2y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.862023 + 0.412869I
a = 0.233003 0.750879I
b = 0.510869 + 0.551075I
1.44750 + 0.78507I 8.28869 4.60495I
u = 0.862023 0.412869I
a = 0.233003 + 0.750879I
b = 0.510869 0.551075I
1.44750 0.78507I 8.28869 + 4.60495I
u = 0.238984 + 1.138460I
a = 0.176605 + 0.841305I
b = 0.915589 + 0.402116I
8.28528 + 1.18132I 2.81561 0.13577I
u = 0.238984 1.138460I
a = 0.176605 0.841305I
b = 0.915589 0.402116I
8.28528 1.18132I 2.81561 + 0.13577I
u = 0.376961 + 1.214800I
a = 0.943602 0.451942I
b = 0.904720 0.975923I
1.38689 5.20040I 6.89570 + 6.16090I
u = 0.376961 1.214800I
a = 0.943602 + 0.451942I
b = 0.904720 + 0.975923I
1.38689 + 5.20040I 6.89570 6.16090I
10
III. I
u
3
= h−u
5
+ u
4
2u
3
+ au + u
2
+ b u + 1, u
5
a 2u
5
+ · · · 2a +
4, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
8
=
a
u
5
u
4
+ 2u
3
au u
2
+ u 1
a
6
=
u
5
a u
4
a u
5
+ 2u
3
a + u
4
u
2
a 3u
3
+ au + 2u
2
a 2u + 2
1
a
9
=
u
5
u
4
+ 2u
3
au u
2
+ a + u 1
u
5
u
4
+ 2u
3
au u
2
+ u 1
a
4
=
u
u
3
+ u
a
3
=
u
5
3u
4
+ 6u
3
au 7u
2
+ a + 5u 3
u
3
a 2u
4
u
2
a + 3u
3
+ au 3u
2
+ 2u + 1
a
7
=
u
4
a + u
5
+ u
3
a u
4
u
2
a + u
3
+ a u
u
4
a + 2u
5
+ u
3
a 2u
4
u
2
a + 4u
3
2u
2
+ a + u 1
a
10
=
u
5
a + u
4
a + u
5
2u
3
a u
4
+ u
2
a + 3u
3
au 2u
2
+ a + 2u 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
3
+ 8u
2
4u + 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
2
c
2
, c
3
, c
9
u
12
+ u
11
+ ··· + 2u + 13
c
5
, c
8
u
12
+ 5u
11
+ ··· + 6u
2
+ 1
c
6
(u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
2
c
7
u
12
u
11
+ ··· 18u + 23
c
10
(u 1)
12
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
2
c
2
, c
3
, c
9
y
12
+ 15y
11
+ ··· + 360y + 169
c
5
, c
8
y
12
y
11
+ ··· + 12y + 1
c
6
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
2
c
7
y
12
+ 11y
11
+ ··· 416y + 529
c
10
(y 1)
12
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0.211090 + 0.348879I
b = 0.184327 0.304646I
1.08035 4.26950
u = 0.873214
a = 0.211090 0.348879I
b = 0.184327 + 0.304646I
1.08035 4.26950
u = 0.138835 + 1.234450I
a = 0.576096 + 0.033593I
b = 1.96628 1.27394I
9.53998 1.97241I 3.42428 + 3.68478I
u = 0.138835 + 1.234450I
a = 0.84220 + 1.68756I
b = 0.121451 + 0.706495I
9.53998 1.97241I 3.42428 + 3.68478I
u = 0.138835 1.234450I
a = 0.576096 0.033593I
b = 1.96628 + 1.27394I
9.53998 + 1.97241I 3.42428 3.68478I
u = 0.138835 1.234450I
a = 0.84220 1.68756I
b = 0.121451 0.706495I
9.53998 + 1.97241I 3.42428 3.68478I
u = 0.408802 + 1.276380I
a = 1.089440 0.275882I
b = 0.511061 0.781659I
2.88416 + 4.59213I 0.58114 3.20482I
u = 0.408802 + 1.276380I
a = 0.671738 + 0.185253I
b = 0.79749 + 1.27775I
2.88416 + 4.59213I 0.58114 3.20482I
u = 0.408802 1.276380I
a = 1.089440 + 0.275882I
b = 0.511061 + 0.781659I
2.88416 4.59213I 0.58114 + 3.20482I
u = 0.408802 1.276380I
a = 0.671738 0.185253I
b = 0.79749 1.27775I
2.88416 4.59213I 0.58114 + 3.20482I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.413150
a = 2.13731 + 1.92634I
b = 0.883031 + 0.795869I
5.84089 5.41680
u = 0.413150
a = 2.13731 1.92634I
b = 0.883031 0.795869I
5.84089 5.41680
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
2
· (u
6
+ 2u
5
+ ··· + 4u + 2)(u
13
+ 5u
12
+ ··· 12u 2)
c
2
, c
3
, c
9
(u
6
+ 2u
4
2u
2
+ 1)(u
12
+ u
11
+ ··· + 2u + 13)
· (u
13
+ 10u
11
+ ··· + 2u 1)
c
4
(u
6
2u
5
+ 4u
4
5u
3
+ 5u
2
4u + 2)
· ((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
2
)(u
13
+ 5u
12
+ ··· 12u 2)
c
5
, c
8
(u
6
+ u
5
2u
3
+ u + 1)(u
12
+ 5u
11
+ ··· + 6u
2
+ 1)
· (u
13
+ u
12
+ ··· + 5u 1)
c
6
(u
6
5u
5
+ 10u
4
12u
3
+ 11u
2
6u + 2)
· ((u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
2
)(u
13
8u
12
+ ··· + 18u 10)
c
7
(u
6
+ u
5
+ 3u
4
u
3
+ u
2
2u + 1)(u
12
u
11
+ ··· 18u + 23)
· (u
13
u
12
+ ··· + 20u 7)
c
10
((u 1)
12
)(u
6
+ u
5
2u
3
+ u + 1)(u
13
+ 12u
12
+ ··· 288u 64)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
6
+ 4y
5
+ 6y
4
+ 3y
3
+ y
2
+ 4y + 4)
· ((y
6
+ 5y
5
+ ··· 5y + 1)
2
)(y
13
+ 9y
12
+ ··· + 24y 4)
c
2
, c
3
, c
9
((y
3
+ 2y
2
2y + 1)
2
)(y
12
+ 15y
11
+ ··· + 360y + 169)
· (y
13
+ 20y
12
+ ··· 10y 1)
c
5
, c
8
(y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1)(y
12
y
11
+ ··· + 12y + 1)
· (y
13
+ 7y
12
+ ··· + 23y 1)
c
6
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
2
· (y
6
5y
5
+ 2y
4
+ 20y
3
+ 17y
2
+ 8y + 4)
· (y
13
16y
12
+ ··· + 1284y 100)
c
7
(y
6
+ 5y
5
+ 13y
4
+ 11y
3
+ 3y
2
2y + 1)
· (y
12
+ 11y
11
+ ··· 416y + 529)(y
13
+ 13y
12
+ ··· + 64y 49)
c
10
(y 1)
12
(y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1)
· (y
13
2y
12
+ ··· + 1024y 4096)
17