12n
0411
(K12n
0411
)
A knot diagram
1
Linearized knot diagam
3 6 7 10 2 11 3 12 6 4 9 8
Solving Sequence
6,11 4,7
3 2 1 5 10 9 12 8
c
6
c
3
c
2
c
1
c
5
c
10
c
9
c
11
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
12
6u
11
+ 10u
10
16u
9
+ 24u
8
45u
7
+ 45u
6
39u
5
+ 21u
4
20u
3
3u
2
+ 3b + u 6,
u
12
5u
11
+ 10u
10
15u
9
+ 23u
8
39u
7
+ 45u
6
36u
5
+ 18u
4
11u
3
2u
2
+ 3a + 4u 5,
u
13
4u
12
+ 10u
11
17u
10
+ 28u
9
42u
8
+ 57u
7
57u
6
+ 45u
5
23u
4
+ 8u
3
+ 4u
2
4u + 3i
I
u
2
= hu
3
+ 2u
2
+ b + 3u + 2, u
3
3u
2
+ a 5u 2, u
4
+ 3u
3
+ 5u
2
+ 3u + 1i
I
u
3
= h−u
3
u
2
+ b a u, a
2
+ au + u
2
, u
4
+ u
3
+ u
2
+ 1i
I
u
4
= h−u
3
+ u
2
+ b a u, a
2
+ au u
2
+ 2u 2, u
4
u
3
+ u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
12
6u
11
+· · ·+3b6, u
12
5u
11
+· · ·+3a5, u
13
4u
12
+· · ·4u+3i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
1
3
u
12
+
5
3
u
11
+ ···
4
3
u +
5
3
1
3
u
12
+ 2u
11
+ ···
1
3
u + 2
a
7
=
1
u
2
a
3
=
4
3
u
12
+
11
3
u
11
+ ···
10
3
u +
2
3
5
3
u
12
6u
11
+ ··· +
14
3
u 4
a
2
=
1
3
u
12
7
3
u
11
+ ··· +
4
3
u
10
3
5
3
u
12
6u
11
+ ··· +
14
3
u 4
a
1
=
5
3
u
12
+ 6u
11
+ ···
14
3
u + 3
4
3
u
12
9u
11
+ ··· +
19
3
u 10
a
5
=
5
3
u
12
14
3
u
11
+ ··· +
5
3
u
5
3
5
3
u
12
3u
11
+ ··· + u
2
+
8
3
u
a
10
=
4
3
u
11
+ 3u
10
+ ···
4
3
u
2
4
3
1
3
u
12
3u
11
+ ··· +
4
3
u 3
a
9
=
1
3
u
12
+
5
3
u
11
+ ···
4
3
u +
5
3
1
3
u
12
3u
11
+ ··· +
4
3
u 3
a
12
=
4
3
u
11
3u
10
+ ··· +
4
3
u
2
+
4
3
2u
12
+ 5u
11
+ ··· 2u + 2
a
8
=
5
3
u
12
14
3
u
11
+ ··· +
5
3
u
5
3
2u
12
+ 8u
11
+ ··· 4u + 5
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
12
+11u
11
24u
10
+36u
9
58u
8
+85u
7
105u
6
+83u
5
44u
4
+u
3
+16u
2
21u + 9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ 20u
11
+ ··· + 36u + 1
c
2
, c
5
u
13
+ 2u
12
+ ··· + 18u
2
1
c
3
, c
7
u
13
u
12
+ ··· + 3u 9
c
4
, c
8
, c
10
c
11
, c
12
u
13
+ 7u
11
+ ··· u 1
c
6
u
13
+ 4u
12
+ ··· 4u 3
c
9
u
13
2u
12
+ ··· 133u 47
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 40y
12
+ ··· + 516y 1
c
2
, c
5
y
13
+ 20y
11
+ ··· + 36y 1
c
3
, c
7
y
13
+ 5y
12
+ ··· + 531y 81
c
4
, c
8
, c
10
c
11
, c
12
y
13
+ 14y
12
+ ··· 3y 1
c
6
y
13
+ 4y
12
+ ··· 8y 9
c
9
y
13
+ 2y
12
+ ··· + 7725y 2209
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.112707 + 0.825249I
a = 1.70029 0.14926I
b = 2.12147 1.28759I
12.72660 0.46866I 5.30984 0.31692I
u = 0.112707 0.825249I
a = 1.70029 + 0.14926I
b = 2.12147 + 1.28759I
12.72660 + 0.46866I 5.30984 + 0.31692I
u = 0.406174 + 0.693805I
a = 0.149604 0.367477I
b = 0.471527 + 0.893453I
1.76494 + 1.40421I 0.52711 5.14601I
u = 0.406174 0.693805I
a = 0.149604 + 0.367477I
b = 0.471527 0.893453I
1.76494 1.40421I 0.52711 + 5.14601I
u = 1.024170 + 0.753551I
a = 0.053482 + 1.217710I
b = 0.722949 0.068003I
3.48672 4.77545I 3.43860 + 2.44766I
u = 1.024170 0.753551I
a = 0.053482 1.217710I
b = 0.722949 + 0.068003I
3.48672 + 4.77545I 3.43860 2.44766I
u = 0.843226 + 1.079170I
a = 1.241480 + 0.154013I
b = 2.48433 0.51976I
2.43630 + 11.55640I 2.21919 5.92330I
u = 0.843226 1.079170I
a = 1.241480 0.154013I
b = 2.48433 + 0.51976I
2.43630 11.55640I 2.21919 + 5.92330I
u = 0.909975 + 1.063640I
a = 0.583078 0.410756I
b = 1.264870 0.146138I
5.92792 + 3.64387I 2.44803 4.63149I
u = 0.909975 1.063640I
a = 0.583078 + 0.410756I
b = 1.264870 + 0.146138I
5.92792 3.64387I 2.44803 + 4.63149I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.81473 + 1.23874I
a = 0.804503 + 0.414194I
b = 2.15769 0.65518I
8.05335 3.89125I 0.817708 + 0.132635I
u = 0.81473 1.23874I
a = 0.804503 0.414194I
b = 2.15769 + 0.65518I
8.05335 + 3.89125I 0.817708 0.132635I
u = 0.512230
a = 0.750525
b = 0.130679
0.686378 14.7810
6
II.
I
u
2
= hu
3
+ 2u
2
+ b + 3u + 2 , u
3
3u
2
+ a 5u 2, u
4
+ 3u
3
+ 5u
2
+ 3u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
u
3
+ 3u
2
+ 5u + 2
u
3
2u
2
3u 2
a
7
=
1
u
2
a
3
=
2u
3
+ 6u
2
+ 9u + 4
u
2
2u 2
a
2
=
2u
3
+ 5u
2
+ 7u + 2
u
2
2u 2
a
1
=
2u
3
5u
2
7u 1
2u
3
+ 5u
2
+ 7u + 2
a
5
=
2u
3
+ 5u
2
+ 7u + 2
u
3
3u
2
5u 3
a
10
=
u
3
+ 3u
2
+ 4u + 1
u 1
a
9
=
u
3
+ 3u
2
+ 5u + 2
u 1
a
12
=
u
3
3u
2
4u 1
u
2
+ 3u + 1
a
8
=
2u
3
+ 5u
2
+ 7u + 2
u
3
4u
2
5u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
3
18u
2
19u 4
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
3u
3
+ 5u
2
3u + 1
c
2
u
4
u
3
u
2
+ u + 1
c
3
(u
2
u + 1)
2
c
4
, c
8
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
5
u
4
+ u
3
u
2
u + 1
c
6
u
4
+ 3u
3
+ 5u
2
+ 3u + 1
c
7
(u
2
+ u + 1)
2
c
9
, c
10
, c
11
c
12
u
4
u
3
+ 2u
2
2u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
4
+ y
3
+ 9y
2
+ y + 1
c
2
, c
5
y
4
3y
3
+ 5y
2
3y + 1
c
3
, c
7
(y
2
+ y + 1)
2
c
4
, c
8
, c
9
c
10
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.378256 + 0.440597I
a = 0.121744 + 1.306620I
b = 0.929304 0.758745I
1.54288 0.56550I 2.94255 3.09675I
u = 0.378256 0.440597I
a = 0.121744 1.306620I
b = 0.929304 + 0.758745I
1.54288 + 0.56550I 2.94255 + 3.09675I
u = 1.12174 + 1.30662I
a = 0.621744 + 0.440597I
b = 2.07070 0.75874I
8.32672 4.62527I 4.94255 + 9.02760I
u = 1.12174 1.30662I
a = 0.621744 0.440597I
b = 2.07070 + 0.75874I
8.32672 + 4.62527I 4.94255 9.02760I
10
III. I
u
3
= h−u
3
u
2
+ b a u, a
2
+ au + u
2
, u
4
+ u
3
+ u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
a
u
3
+ u
2
+ a + u
a
7
=
1
u
2
a
3
=
u
2
a u
3
u
2
u
u
3
a + u
3
+ u
2
a
2
=
u
3
a u
2
a u
u
3
a + u
3
+ u
2
a
1
=
u
3
a 3u
2
a 2u
3
+ au 1
4u
3
a + 2u
3
+ 3u
2
3a 3u + 3
a
5
=
u
2
+ a u + 1
2u
3
+ 2u
2
+ a + 1
a
10
=
u
2
a + u
3
u
2
a + u
3
+ a + u
a
9
=
a u
u
2
a + u
3
+ a + u
a
12
=
u
2
a
u
3
a + a + u
a
8
=
u
2
a 2u + 1
2u
3
u
2
+ a + 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u + 1
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
13u
7
+ 49u
6
+ 10u
5
330u
4
13u
3
+ 1300u
2
+ 868u + 169
c
2
, c
5
u
8
+ 3u
7
+ 11u
6
+ 28u
5
+ 48u
4
+ 79u
3
+ 96u
2
+ 58u + 13
c
3
, c
7
u
8
+ u
7
5u
6
4u
5
+ 15u
4
+ 31u
3
+ 34u
2
+ 32u + 19
c
4
, c
8
, c
10
c
11
, c
12
u
8
+ u
7
2u
6
u
5
+ 6u
4
+ 4u
3
+ u
2
+ 2u + 1
c
6
(u
4
u
3
+ u
2
+ 1)
2
c
9
u
8
+ u
7
4u
6
+ 7u
5
+ 24u
4
9u
3
9u
2
2u + 4
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
71y
7
+ ··· 314024y + 28561
c
2
, c
5
y
8
+ 13y
7
+ 49y
6
10y
5
330y
4
+ 13y
3
+ 1300y
2
868y + 169
c
3
, c
7
y
8
11y
7
+ 63y
6
160y
5
+ 107y
4
+ 125y
3
258y
2
+ 268y + 361
c
4
, c
8
, c
10
c
11
, c
12
y
8
5y
7
+ 18y
6
31y
5
+ 38y
4
4y
3
3y
2
2y + 1
c
6
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
9
y
8
9y
7
+ 50y
6
241y
5
+ 786y
4
517y
3
+ 237y
2
76y + 16
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 0.447930 0.664845I
b = 0.099494 + 0.456028I
1.85594 + 1.41510I 1.17326 4.90874I
u = 0.351808 + 0.720342I
a = 0.799738 0.055496I
b = 1.34716 + 1.06538I
1.85594 + 1.41510I 1.17326 4.90874I
u = 0.351808 0.720342I
a = 0.447930 + 0.664845I
b = 0.099494 0.456028I
1.85594 1.41510I 1.17326 + 4.90874I
u = 0.351808 0.720342I
a = 0.799738 + 0.055496I
b = 1.34716 1.06538I
1.85594 1.41510I 1.17326 + 4.90874I
u = 0.851808 + 0.911292I
a = 0.363298 1.193330I
b = 0.184126 0.607681I
5.14581 3.16396I 4.82674 + 2.56480I
u = 0.851808 + 0.911292I
a = 1.215110 + 0.282041I
b = 1.76253 + 0.86769I
5.14581 3.16396I 4.82674 + 2.56480I
u = 0.851808 0.911292I
a = 0.363298 + 1.193330I
b = 0.184126 + 0.607681I
5.14581 + 3.16396I 4.82674 2.56480I
u = 0.851808 0.911292I
a = 1.215110 0.282041I
b = 1.76253 0.86769I
5.14581 + 3.16396I 4.82674 2.56480I
14
IV. I
u
4
= h−u
3
+ u
2
+ b a u, a
2
+ au u
2
+ 2u 2, u
4
u
3
+ u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
a
u
3
u
2
+ a + u
a
7
=
1
u
2
a
3
=
u
2
a u
3
+ u
2
u
u
3
a + u
3
u
2
a
2
=
u
3
a u
2
a u
u
3
a + u
3
u
2
a
1
=
u
3
a u
2
a + au 1
u
2
a + u 1
a
5
=
u
2
a + u 1
a 1
a
10
=
u
2
a u
3
+ 2u
2
2u
u
2
a u
3
+ 2u
2
+ a u
a
9
=
a u
u
2
a u
3
+ 2u
2
+ a u
a
12
=
u
2
a + 2u
3
2u
2
+ 2u
u
3
a 2u
3
+ 2u
2
a u
a
8
=
u
2
+ a + 2u 1
u
2
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u + 1
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
7u
7
+ 17u
6
14u
5
+ 2u
4
+ u
3
+ 1
c
2
u
8
+ 3u
7
+ u
6
4u
5
4u
4
u
3
+ 2u
2
+ 2u + 1
c
3
u
8
+ u
7
+ 5u
6
+ 8u
5
+ 7u
4
+ 11u
3
+ 10u
2
+ 1
c
4
, c
8
u
8
u
7
+ 6u
6
5u
5
+ 12u
4
8u
3
+ 9u
2
4u + 1
c
5
u
8
3u
7
+ u
6
+ 4u
5
4u
4
+ u
3
+ 2u
2
2u + 1
c
6
(u
4
u
3
+ u
2
+ 1)
2
c
7
u
8
u
7
+ 5u
6
8u
5
+ 7u
4
11u
3
+ 10u
2
+ 1
c
9
u
8
u
7
+ 8u
6
3u
5
16u
4
15u
3
+ 47u
2
+ 70u + 52
c
10
, c
11
, c
12
u
8
+ u
7
+ 6u
6
+ 5u
5
+ 12u
4
+ 8u
3
+ 9u
2
+ 4u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
15y
7
+ 97y
6
114y
5
+ 34y
4
+ 33y
3
+ 4y
2
+ 1
c
2
, c
5
y
8
7y
7
+ 17y
6
14y
5
+ 2y
4
+ y
3
+ 1
c
3
, c
7
y
8
+ 9y
7
+ 23y
6
+ 4y
5
25y
4
+ 29y
3
+ 114y
2
+ 20y + 1
c
4
, c
8
, c
10
c
11
, c
12
y
8
+ 11y
7
+ 50y
6
+ 121y
5
+ 166y
4
+ 124y
3
+ 41y
2
+ 2y + 1
c
6
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
9
y
8
+ 15y
7
+ ··· 12y + 2704
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 1.44280 + 0.28054I
b = 0.89538 + 1.40141I
11.72550 1.41510I 1.17326 + 4.90874I
u = 0.351808 + 0.720342I
a = 1.79461 1.00088I
b = 2.34204 + 0.11999I
11.72550 1.41510I 1.17326 + 4.90874I
u = 0.351808 0.720342I
a = 1.44280 0.28054I
b = 0.89538 1.40141I
11.72550 + 1.41510I 1.17326 4.90874I
u = 0.351808 0.720342I
a = 1.79461 + 1.00088I
b = 2.34204 0.11999I
11.72550 + 1.41510I 1.17326 4.90874I
u = 0.851808 + 0.911292I
a = 0.855085 0.593153I
b = 1.402510 0.007501I
4.72380 + 3.16396I 4.82674 2.56480I
u = 0.851808 + 0.911292I
a = 0.003277 0.318139I
b = 0.544147 + 0.267512I
4.72380 + 3.16396I 4.82674 2.56480I
u = 0.851808 0.911292I
a = 0.855085 + 0.593153I
b = 1.402510 + 0.007501I
4.72380 3.16396I 4.82674 + 2.56480I
u = 0.851808 0.911292I
a = 0.003277 + 0.318139I
b = 0.544147 0.267512I
4.72380 3.16396I 4.82674 + 2.56480I
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
4
3u
3
+ 5u
2
3u + 1)
· (u
8
13u
7
+ 49u
6
+ 10u
5
330u
4
13u
3
+ 1300u
2
+ 868u + 169)
· (u
8
7u
7
+ ··· + u
3
+ 1)(u
13
+ 20u
11
+ ··· + 36u + 1)
c
2
(u
4
u
3
u
2
+ u + 1)(u
8
+ 3u
7
+ ··· + 2u + 1)
· (u
8
+ 3u
7
+ 11u
6
+ 28u
5
+ 48u
4
+ 79u
3
+ 96u
2
+ 58u + 13)
· (u
13
+ 2u
12
+ ··· + 18u
2
1)
c
3
((u
2
u + 1)
2
)(u
8
+ u
7
+ ··· + 32u + 19)
· (u
8
+ u
7
+ ··· + 10u
2
+ 1)(u
13
u
12
+ ··· + 3u 9)
c
4
, c
8
(u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
8
u
7
+ 6u
6
5u
5
+ 12u
4
8u
3
+ 9u
2
4u + 1)
· (u
8
+ u
7
+ ··· + 2u + 1)(u
13
+ 7u
11
+ ··· u 1)
c
5
(u
4
+ u
3
u
2
u + 1)(u
8
3u
7
+ ··· 2u + 1)
· (u
8
+ 3u
7
+ 11u
6
+ 28u
5
+ 48u
4
+ 79u
3
+ 96u
2
+ 58u + 13)
· (u
13
+ 2u
12
+ ··· + 18u
2
1)
c
6
((u
4
u
3
+ u
2
+ 1)
4
)(u
4
+ 3u
3
+ ··· + 3u + 1)(u
13
+ 4u
12
+ ··· 4u 3)
c
7
(u
2
+ u + 1)
2
(u
8
u
7
+ 5u
6
8u
5
+ 7u
4
11u
3
+ 10u
2
+ 1)
· (u
8
+ u
7
5u
6
4u
5
+ 15u
4
+ 31u
3
+ 34u
2
+ 32u + 19)
· (u
13
u
12
+ ··· + 3u 9)
c
9
(u
4
u
3
+ 2u
2
2u + 1)
· (u
8
u
7
+ 8u
6
3u
5
16u
4
15u
3
+ 47u
2
+ 70u + 52)
· (u
8
+ u
7
4u
6
+ 7u
5
+ 24u
4
9u
3
9u
2
2u + 4)
· (u
13
2u
12
+ ··· 133u 47)
c
10
, c
11
, c
12
(u
4
u
3
+ 2u
2
2u + 1)(u
8
+ u
7
+ ··· + 2u + 1)
· (u
8
+ u
7
+ 6u
6
+ 5u
5
+ 12u
4
+ 8u
3
+ 9u
2
+ 4u + 1)
· (u
13
+ 7u
11
+ ··· u 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ y
3
+ 9y
2
+ y + 1)(y
8
71y
7
+ ··· 314024y + 28561)
· (y
8
15y
7
+ 97y
6
114y
5
+ 34y
4
+ 33y
3
+ 4y
2
+ 1)
· (y
13
+ 40y
12
+ ··· + 516y 1)
c
2
, c
5
(y
4
3y
3
+ 5y
2
3y + 1)(y
8
7y
7
+ 17y
6
14y
5
+ 2y
4
+ y
3
+ 1)
· (y
8
+ 13y
7
+ 49y
6
10y
5
330y
4
+ 13y
3
+ 1300y
2
868y + 169)
· (y
13
+ 20y
11
+ ··· + 36y 1)
c
3
, c
7
(y
2
+ y + 1)
2
· (y
8
11y
7
+ 63y
6
160y
5
+ 107y
4
+ 125y
3
258y
2
+ 268y + 361)
· (y
8
+ 9y
7
+ 23y
6
+ 4y
5
25y
4
+ 29y
3
+ 114y
2
+ 20y + 1)
· (y
13
+ 5y
12
+ ··· + 531y 81)
c
4
, c
8
, c
10
c
11
, c
12
(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
8
5y
7
+ 18y
6
31y
5
+ 38y
4
4y
3
3y
2
2y + 1)
· (y
8
+ 11y
7
+ 50y
6
+ 121y
5
+ 166y
4
+ 124y
3
+ 41y
2
+ 2y + 1)
· (y
13
+ 14y
12
+ ··· 3y 1)
c
6
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
4
(y
4
+ y
3
+ 9y
2
+ y + 1)
· (y
13
+ 4y
12
+ ··· 8y 9)
c
9
(y
4
+ 3y
3
+ 2y
2
+ 1)
· (y
8
9y
7
+ 50y
6
241y
5
+ 786y
4
517y
3
+ 237y
2
76y + 16)
· (y
8
+ 15y
7
+ ··· 12y + 2704)(y
13
+ 2y
12
+ ··· + 7725y 2209)
20