12n
0413
(K12n
0413
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 9 5 12 7 4 8 9
Solving Sequence
6,9
7
3,10
2 1 5 4 12 8 11
c
6
c
9
c
2
c
1
c
5
c
4
c
12
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−9.68083 × 10
106
u
48
+ 1.80477 × 10
107
u
47
+ ··· + 7.70077 × 10
108
b + 4.07046 × 10
109
,
6.39121 × 10
109
u
48
1.62145 × 10
110
u
47
+ ··· + 1.28603 × 10
111
a 1.39682 × 10
112
,
u
49
2u
48
+ ··· 1083u 167i
I
u
2
= h−4356880u
16
+ 8072348u
15
+ ··· + 14725657b + 19826117,
15345062u
16
28541073u
15
+ ··· + 14725657a 99165990, u
17
u
16
+ ··· 5u 1i
I
u
3
= hb + 1, u
3
+ 2u
2
+ a 1, u
4
+ 3u
3
+ 2u
2
+ 1i
I
u
4
= hb + 1, a + 2, u 1i
* 4 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9.68 × 10
106
u
48
+ 1.80 × 10
107
u
47
+ · · · + 7.70 × 10
108
b + 4.07 ×
10
109
, 6.39 × 10
109
u
48
1.62 × 10
110
u
47
+ · · · + 1.29 × 10
111
a 1.40 ×
10
112
, u
49
2u
48
+ · · · 1083u 167i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
3
=
0.0496973u
48
+ 0.126082u
47
+ ··· + 51.3655u + 10.8615
0.0125713u
48
0.0234362u
47
+ ··· 23.9191u 5.28578
a
10
=
u
u
3
+ u
a
2
=
0.0371260u
48
+ 0.102646u
47
+ ··· + 27.4464u + 5.57574
0.0125713u
48
0.0234362u
47
+ ··· 23.9191u 5.28578
a
1
=
0.0147332u
48
+ 0.0581855u
47
+ ··· 5.41058u + 0.310122
0.0402524u
48
0.122863u
47
+ ··· 26.9497u 3.52830
a
5
=
0.0182261u
48
+ 0.0716241u
47
+ ··· 6.44692u 6.24038
0.152512u
48
+ 0.408573u
47
+ ··· + 193.403u + 40.3475
a
4
=
0.0676174u
48
0.168317u
47
+ ··· 101.750u 24.4584
0.182706u
48
+ 0.491490u
47
+ ··· + 229.123u + 47.1670
a
12
=
0.0147332u
48
+ 0.0581855u
47
+ ··· 5.41058u + 0.310122
0.0101824u
48
0.0352370u
47
+ ··· + 1.69276u + 1.26781
a
8
=
0.0328901u
48
0.0927795u
47
+ ··· 48.5742u 1.25960
0.0758750u
48
0.205486u
47
+ ··· 90.6780u 20.9576
a
11
=
0.0537472u
48
+ 0.151765u
47
+ ··· + 60.2707u + 8.53722
0.0318713u
48
0.0804240u
47
+ ··· 41.2502u 8.00996
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.462159u
48
1.17412u
47
+ ··· 696.600u 157.924
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
49
+ 29u
48
+ ··· + 3724u + 784
c
2
, c
5
u
49
3u
48
+ ··· 70u + 28
c
3
u
49
+ 2u
48
+ ··· 3520u + 227
c
4
, c
10
u
49
+ 3u
48
+ ··· 60u + 29
c
6
, c
9
u
49
+ 2u
48
+ ··· 1083u + 167
c
7
u
49
4u
48
+ ··· 400u + 79
c
8
, c
11
, c
12
u
49
5u
48
+ ··· + 127u + 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
49
13y
48
+ ··· 10750992y 614656
c
2
, c
5
y
49
29y
48
+ ··· + 3724y 784
c
3
y
49
86y
48
+ ··· + 4342796y 51529
c
4
, c
10
y
49
+ 61y
48
+ ··· 7014y 841
c
6
, c
9
y
49
48y
48
+ ··· + 633479y 27889
c
7
y
49
6y
48
+ ··· + 26648y 6241
c
8
, c
11
, c
12
y
49
3y
48
+ ··· + 7771y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.850931 + 0.053544I
a = 0.104499 0.401543I
b = 0.905932 + 0.857759I
3.32807 + 3.38377I 7.75310 1.13902I
u = 0.850931 0.053544I
a = 0.104499 + 0.401543I
b = 0.905932 0.857759I
3.32807 3.38377I 7.75310 + 1.13902I
u = 0.718657 + 0.427589I
a = 0.668880 + 0.170629I
b = 0.699751 0.643620I
3.14393 2.25034I 3.25983 + 3.67150I
u = 0.718657 0.427589I
a = 0.668880 0.170629I
b = 0.699751 + 0.643620I
3.14393 + 2.25034I 3.25983 3.67150I
u = 0.212773 + 1.173370I
a = 0.478582 0.559994I
b = 1.032280 + 0.304555I
0.81823 3.68405I 0
u = 0.212773 1.173370I
a = 0.478582 + 0.559994I
b = 1.032280 0.304555I
0.81823 + 3.68405I 0
u = 0.285077 + 1.160990I
a = 0.507725 1.069200I
b = 0.362811 + 0.450437I
3.86581 3.46047I 0
u = 0.285077 1.160990I
a = 0.507725 + 1.069200I
b = 0.362811 0.450437I
3.86581 + 3.46047I 0
u = 1.165410 + 0.313519I
a = 0.211471 0.778096I
b = 0.044659 + 1.016460I
1.48591 + 4.14998I 0
u = 1.165410 0.313519I
a = 0.211471 + 0.778096I
b = 0.044659 1.016460I
1.48591 4.14998I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.220420 + 0.103596I
a = 0.409963 0.768191I
b = 1.44014 + 0.49949I
5.69136 + 1.78229I 0
u = 1.220420 0.103596I
a = 0.409963 + 0.768191I
b = 1.44014 0.49949I
5.69136 1.78229I 0
u = 1.259170 + 0.059094I
a = 0.228657 + 0.856126I
b = 0.126950 0.770054I
2.40638 0.33187I 0
u = 1.259170 0.059094I
a = 0.228657 0.856126I
b = 0.126950 + 0.770054I
2.40638 + 0.33187I 0
u = 1.184680 + 0.442717I
a = 0.330399 + 0.355978I
b = 0.824658 + 0.266758I
2.29612 1.29906I 0
u = 1.184680 0.442717I
a = 0.330399 0.355978I
b = 0.824658 0.266758I
2.29612 + 1.29906I 0
u = 0.268177 + 0.569650I
a = 0.806426 + 0.964971I
b = 0.227906 0.424848I
1.32877 0.64027I 5.53279 + 1.79656I
u = 0.268177 0.569650I
a = 0.806426 0.964971I
b = 0.227906 + 0.424848I
1.32877 + 0.64027I 5.53279 1.79656I
u = 1.367990 + 0.149902I
a = 0.15755 1.41438I
b = 1.29944 + 0.59734I
12.95210 5.26540I 0
u = 1.367990 0.149902I
a = 0.15755 + 1.41438I
b = 1.29944 0.59734I
12.95210 + 5.26540I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.28015 + 0.61372I
a = 0.78597 1.20619I
b = 0.988679 + 0.244010I
5.81191 4.96842I 0
u = 1.28015 0.61372I
a = 0.78597 + 1.20619I
b = 0.988679 0.244010I
5.81191 + 4.96842I 0
u = 1.12078 + 0.91260I
a = 0.551284 + 0.887947I
b = 0.754353 0.445736I
5.19854 2.05240I 0
u = 1.12078 0.91260I
a = 0.551284 0.887947I
b = 0.754353 + 0.445736I
5.19854 + 2.05240I 0
u = 1.43653 + 0.16422I
a = 0.358028 0.892202I
b = 0.171432 + 1.020400I
9.49455 0.58370I 0
u = 1.43653 0.16422I
a = 0.358028 + 0.892202I
b = 0.171432 1.020400I
9.49455 + 0.58370I 0
u = 0.526163
a = 1.19463
b = 0.608001
1.12208 10.0430
u = 0.520256 + 0.072784I
a = 0.63731 + 1.59304I
b = 0.871886 0.778003I
4.54654 + 2.92338I 9.70360 6.96370I
u = 0.520256 0.072784I
a = 0.63731 1.59304I
b = 0.871886 + 0.778003I
4.54654 2.92338I 9.70360 + 6.96370I
u = 1.40029 + 0.51673I
a = 0.253189 + 1.133510I
b = 1.33405 0.50974I
5.71203 + 9.55647I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40029 0.51673I
a = 0.253189 1.133510I
b = 1.33405 + 0.50974I
5.71203 9.55647I 0
u = 1.50499 + 0.03703I
a = 0.135912 0.745098I
b = 1.44136 + 0.38763I
15.0837 + 3.2894I 0
u = 1.50499 0.03703I
a = 0.135912 + 0.745098I
b = 1.44136 0.38763I
15.0837 3.2894I 0
u = 1.47957 + 0.40480I
a = 0.074080 + 1.221990I
b = 1.202330 0.506289I
5.53719 4.43702I 0
u = 1.47957 0.40480I
a = 0.074080 1.221990I
b = 1.202330 + 0.506289I
5.53719 + 4.43702I 0
u = 1.50367 + 0.38165I
a = 0.139516 + 0.920366I
b = 0.161176 1.103200I
9.77091 + 8.62339I 0
u = 1.50367 0.38165I
a = 0.139516 0.920366I
b = 0.161176 + 1.103200I
9.77091 8.62339I 0
u = 0.249001 + 0.193937I
a = 3.79562 2.57743I
b = 0.883863 + 0.524484I
3.15492 + 2.13839I 0.12860 2.71183I
u = 0.249001 0.193937I
a = 3.79562 + 2.57743I
b = 0.883863 0.524484I
3.15492 2.13839I 0.12860 + 2.71183I
u = 0.197940 + 0.226170I
a = 4.74888 2.79183I
b = 1.246010 0.150153I
8.82996 + 3.71591I 8.95298 2.19762I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.197940 0.226170I
a = 4.74888 + 2.79183I
b = 1.246010 + 0.150153I
8.82996 3.71591I 8.95298 + 2.19762I
u = 1.67411 + 0.47879I
a = 0.207774 0.858058I
b = 1.189780 + 0.403248I
6.21895 4.32179I 0
u = 1.67411 0.47879I
a = 0.207774 + 0.858058I
b = 1.189780 0.403248I
6.21895 + 4.32179I 0
u = 1.68681 + 0.54892I
a = 0.116244 1.107380I
b = 1.32009 + 0.60354I
13.3928 + 14.7009I 0
u = 1.68681 0.54892I
a = 0.116244 + 1.107380I
b = 1.32009 0.60354I
13.3928 14.7009I 0
u = 1.80483 + 0.31448I
a = 0.085676 + 0.557680I
b = 1.35959 0.40465I
14.4034 5.4986I 0
u = 1.80483 0.31448I
a = 0.085676 0.557680I
b = 1.35959 + 0.40465I
14.4034 + 5.4986I 0
u = 0.89129 + 1.69936I
a = 0.290327 + 0.793046I
b = 1.070560 0.387674I
5.92444 6.99855I 0
u = 0.89129 1.69936I
a = 0.290327 0.793046I
b = 1.070560 + 0.387674I
5.92444 + 6.99855I 0
9
II.
I
u
2
= h−4.36 × 10
6
u
16
+ 8.07 × 10
6
u
15
+ · · · + 1.47 × 10
7
b + 1.98 × 10
7
, 1.53 ×
10
7
u
16
2.85 × 10
7
u
15
+ · · · + 1.47 × 10
7
a 9.92 × 10
7
, u
17
u
16
+ · · · 5u 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
3
=
1.04206u
16
+ 1.93819u
15
+ ··· + 21.4169u + 6.73423
0.295870u
16
0.548183u
15
+ ··· 5.56821u 1.34637
a
10
=
u
u
3
+ u
a
2
=
0.746193u
16
+ 1.39000u
15
+ ··· + 15.8487u + 5.38787
0.295870u
16
0.548183u
15
+ ··· 5.56821u 1.34637
a
1
=
0.878435u
16
0.528983u
15
+ ··· + 7.77681u 5.08941
0.0718985u
16
+ 0.127527u
15
+ ··· 0.371082u + 2.59084
a
5
=
2.09405u
16
2.55950u
15
+ ··· 6.65219u 5.86775
1.19341u
16
+ 1.25712u
15
+ ··· + 3.60488u + 2.71050
a
4
=
2.43046u
16
2.74542u
15
+ ··· 5.93479u 5.57732
1.03784u
16
+ 1.06714u
15
+ ··· + 3.97631u + 2.57055
a
12
=
0.878435u
16
0.528983u
15
+ ··· + 7.77681u 5.08941
0.231578u
16
+ 0.469827u
15
+ ··· + 2.25461u + 2.94030
a
8
=
u
16
+ u
15
+ ··· 6u + 6
0.910587u
16
1.03215u
15
+ ··· + 1.54869u 2.77612
a
11
=
0.349452u
16
0.509132u
15
+ ··· 0.697239u + 0.878435
0.0785691u
16
+ 0.224318u
15
+ ··· + 4.40810u + 0.117874
(ii) Obstruction class = 1
(iii) Cusp Shapes =
44098255
14725657
u
16
9781706
14725657
u
15
+ ··· +
81882286
14725657
u +
161815615
14725657
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
9u
16
+ ··· + 12u 1
c
2
u
17
u
16
+ ··· + 6u
2
1
c
3
u
17
+ u
16
+ ··· + 13u
2
1
c
4
u
17
+ 10u
15
+ ··· + 2u 1
c
5
u
17
+ u
16
+ ··· 6u
2
+ 1
c
6
u
17
u
16
+ ··· 5u 1
c
7
u
17
+ 3u
16
+ ··· u
2
+ 1
c
8
u
17
4u
16
+ ··· 3u + 1
c
9
u
17
+ u
16
+ ··· 5u + 1
c
10
u
17
+ 10u
15
+ ··· + 2u + 1
c
11
, c
12
u
17
+ 4u
16
+ ··· 3u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 7y
16
+ ··· + 8y 1
c
2
, c
5
y
17
9y
16
+ ··· + 12y 1
c
3
y
17
11y
16
+ ··· + 26y 1
c
4
, c
10
y
17
+ 20y
16
+ ··· 28y 1
c
6
, c
9
y
17
17y
16
+ ··· + 37y 1
c
7
y
17
+ 9y
16
+ ··· + 2y 1
c
8
, c
11
, c
12
y
17
16y
16
+ ··· + y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.957854 + 0.298951I
a = 0.334041 + 0.709299I
b = 0.650226 0.887312I
2.95875 4.08497I 3.71386 + 10.03298I
u = 0.957854 0.298951I
a = 0.334041 0.709299I
b = 0.650226 + 0.887312I
2.95875 + 4.08497I 3.71386 10.03298I
u = 0.963042 + 0.343353I
a = 0.229026 0.855460I
b = 0.904042 0.243298I
1.77275 1.07365I 7.71871 0.81835I
u = 0.963042 0.343353I
a = 0.229026 + 0.855460I
b = 0.904042 + 0.243298I
1.77275 + 1.07365I 7.71871 + 0.81835I
u = 1.042230 + 0.131331I
a = 0.46890 1.60505I
b = 0.876881 + 0.678116I
1.44921 + 2.62103I 4.44930 3.32170I
u = 1.042230 0.131331I
a = 0.46890 + 1.60505I
b = 0.876881 0.678116I
1.44921 2.62103I 4.44930 + 3.32170I
u = 0.764814 + 0.879583I
a = 0.14665 + 1.60242I
b = 0.601934 0.283302I
4.94180 3.21948I 5.99068 + 3.01805I
u = 0.764814 0.879583I
a = 0.14665 1.60242I
b = 0.601934 + 0.283302I
4.94180 + 3.21948I 5.99068 3.01805I
u = 1.300670 + 0.072680I
a = 0.279715 + 0.828722I
b = 1.283940 0.573989I
5.30566 2.10327I 5.60859 + 5.91464I
u = 1.300670 0.072680I
a = 0.279715 0.828722I
b = 1.283940 + 0.573989I
5.30566 + 2.10327I 5.60859 5.91464I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.520538
a = 2.67975
b = 0.547185
0.370928 3.41290
u = 1.35710 + 1.09082I
a = 0.108411 1.235250I
b = 1.120510 + 0.397524I
6.97220 6.27581I 9.68626 + 6.62498I
u = 1.35710 1.09082I
a = 0.108411 + 1.235250I
b = 1.120510 0.397524I
6.97220 + 6.27581I 9.68626 6.62498I
u = 0.243492 + 0.067657I
a = 1.97435 + 2.90440I
b = 0.880570 0.722002I
4.91174 + 2.75823I 9.07218 + 0.56830I
u = 0.243492 0.067657I
a = 1.97435 2.90440I
b = 0.880570 + 0.722002I
4.91174 2.75823I 9.07218 0.56830I
u = 1.89195 + 0.35480I
a = 0.263422 0.162539I
b = 0.885671 + 0.299147I
0.92930 1.29681I 0.11122 + 4.93024I
u = 1.89195 0.35480I
a = 0.263422 + 0.162539I
b = 0.885671 0.299147I
0.92930 + 1.29681I 0.11122 4.93024I
14
III. I
u
3
= hb + 1, u
3
+ 2u
2
+ a 1, u
4
+ 3u
3
+ 2u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
3
=
u
3
2u
2
+ 1
1
a
10
=
u
u
3
+ u
a
2
=
u
3
2u
2
1
a
1
=
1
0
a
5
=
u
3
2u
2
+ 1
1
a
4
=
3u
3
5u
2
3u
3
4u
2
+ 2u 3
a
12
=
1
u
2
a
8
=
u
u
3
+ u
a
11
=
u
2
1
3u
3
4u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u + 1)
4
c
3
, c
4
, c
7
c
10
u
4
+ u
3
+ 2u
2
+ 2u + 1
c
6
, c
9
u
4
3u
3
+ 2u
2
+ 1
c
8
, c
11
, c
12
u
4
+ 3u
3
+ 2u
2
+ 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
7
c
10
y
4
+ 3y
3
+ 2y
2
+ 1
c
6
, c
8
, c
9
c
11
, c
12
y
4
5y
3
+ 6y
2
+ 4y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.192440 + 0.547877I
a = 1.69244 0.31815I
b = 1.00000
1.64493 6.00000
u = 0.192440 0.547877I
a = 1.69244 + 0.31815I
b = 1.00000
1.64493 6.00000
u = 1.69244 + 0.31815I
a = 0.192440 0.547877I
b = 1.00000
1.64493 6.00000
u = 1.69244 0.31815I
a = 0.192440 + 0.547877I
b = 1.00000
1.64493 6.00000
18
IV. I
u
4
= hb + 1, a + 2, u 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
1
a
7
=
1
1
a
3
=
2
1
a
10
=
1
0
a
2
=
3
1
a
1
=
1
0
a
5
=
2
1
a
4
=
1
1
a
12
=
1
1
a
8
=
1
0
a
11
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
u + 1
c
3
, c
4
, c
7
c
8
, c
10
, c
11
c
12
u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
1.64493 6.00000
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u + 1)
5
)(u
17
9u
16
+ ··· + 12u 1)(u
49
+ 29u
48
+ ··· + 3724u + 784)
c
2
((u + 1)
5
)(u
17
u
16
+ ··· + 6u
2
1)(u
49
3u
48
+ ··· 70u + 28)
c
3
(u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
17
+ u
16
+ ··· + 13u
2
1)
· (u
49
+ 2u
48
+ ··· 3520u + 227)
c
4
(u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
17
+ 10u
15
+ ··· + 2u 1)
· (u
49
+ 3u
48
+ ··· 60u + 29)
c
5
((u + 1)
5
)(u
17
+ u
16
+ ··· 6u
2
+ 1)(u
49
3u
48
+ ··· 70u + 28)
c
6
(u + 1)(u
4
3u
3
+ 2u
2
+ 1)(u
17
u
16
+ ··· 5u 1)
· (u
49
+ 2u
48
+ ··· 1083u + 167)
c
7
(u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
17
+ 3u
16
+ ··· u
2
+ 1)
· (u
49
4u
48
+ ··· 400u + 79)
c
8
(u 1)(u
4
+ 3u
3
+ 2u
2
+ 1)(u
17
4u
16
+ ··· 3u + 1)
· (u
49
5u
48
+ ··· + 127u + 7)
c
9
(u + 1)(u
4
3u
3
+ 2u
2
+ 1)(u
17
+ u
16
+ ··· 5u + 1)
· (u
49
+ 2u
48
+ ··· 1083u + 167)
c
10
(u 1)(u
4
+ u
3
+ 2u
2
+ 2u + 1)(u
17
+ 10u
15
+ ··· + 2u + 1)
· (u
49
+ 3u
48
+ ··· 60u + 29)
c
11
, c
12
(u 1)(u
4
+ 3u
3
+ 2u
2
+ 1)(u
17
+ 4u
16
+ ··· 3u 1)
· (u
49
5u
48
+ ··· + 127u + 7)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
17
+ 7y
16
+ ··· + 8y 1)
· (y
49
13y
48
+ ··· 10750992y 614656)
c
2
, c
5
((y 1)
5
)(y
17
9y
16
+ ··· + 12y 1)(y
49
29y
48
+ ··· + 3724y 784)
c
3
(y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
17
11y
16
+ ··· + 26y 1)
· (y
49
86y
48
+ ··· + 4342796y 51529)
c
4
, c
10
(y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
17
+ 20y
16
+ ··· 28y 1)
· (y
49
+ 61y
48
+ ··· 7014y 841)
c
6
, c
9
(y 1)(y
4
5y
3
+ ··· + 4y + 1)(y
17
17y
16
+ ··· + 37y 1)
· (y
49
48y
48
+ ··· + 633479y 27889)
c
7
(y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)(y
17
+ 9y
16
+ ··· + 2y 1)
· (y
49
6y
48
+ ··· + 26648y 6241)
c
8
, c
11
, c
12
(y 1)(y
4
5y
3
+ ··· + 4y + 1)(y
17
16y
16
+ ··· + y 1)
· (y
49
3y
48
+ ··· + 7771y 49)
24