12n
0414
(K12n
0414
)
A knot diagram
1
Linearized knot diagam
3 6 11 7 2 10 3 12 6 4 9 8
Solving Sequence
4,10
11
3,7
6 2 1 5 9 12 8
c
10
c
3
c
6
c
2
c
1
c
5
c
9
c
11
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
14
6u
13
+ ··· + 2b + 6, 5u
14
28u
13
+ ··· + 4a + 20, u
15
+ 6u
14
+ ··· 10u 4i
I
u
2
= h−u
10
u
9
5u
8
4u
7
9u
6
5u
5
6u
4
+ b + 2u + 1, u
9
4u
7
5u
5
2u
3
+ u
2
+ a u + 1,
u
11
+ u
10
+ 6u
9
+ 5u
8
+ 13u
7
+ 8u
6
+ 11u
5
+ 2u
4
+ u
3
4u
2
2u 1i
I
u
3
= hb u + 1, a
2
5au + a + u 4, u
2
u + 1i
I
u
4
= hb + u, a
2
+ 3au + 2u, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
14
6u
13
+· · ·+2b+6, 5u
14
28u
13
+· · ·+4a+20, u
15
+6u
14
+· · ·−10u4i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
u
u
3
+ u
a
7
=
5
4
u
14
+ 7u
13
+ ···
29
4
u 5
1
2
u
14
+ 3u
13
+ ···
7
2
u 3
a
6
=
3
4
u
14
+ 4u
13
+ ···
15
4
u 2
1
2
u
14
+ 3u
13
+ ···
7
2
u 3
a
2
=
1
2
u
13
2u
12
+ ··· +
5
2
u +
3
2
1
2
u
14
+ 2u
13
+ ···
1
2
u
2
1
2
u
a
1
=
1
2
u
13
4u
12
+ ··· +
11
2
u +
7
2
3
2
u
14
5u
13
+ ··· +
5
2
u + 2
a
5
=
3
2
u
14
17
2
u
13
+ ··· + 12u +
15
2
1
2
u
14
3u
13
+ ··· +
15
2
u + 4
a
9
=
1
2
u
14
+
5
2
u
13
+ ··· u
1
2
1
2
u
14
+ 3u
13
+ ···
7
2
u 2
a
12
=
1
4
u
14
+ u
13
+ ···
1
4
u + 1
1
2
u
14
2u
13
+ ··· +
1
2
u + 1
a
8
=
7
4
u
14
8u
13
+ ··· +
19
4
u + 1
5
2
u
14
15u
13
+ ··· +
53
2
u + 15
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
14
+ 6u
13
+ 24u
12
+ 69u
11
+ 155u
10
+ 287u
9
+ 438u
8
+ 568u
7
+
616u
6
+ 556u
5
+ 409u
4
+ 223u
3
+ 82u
2
+ 4u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 30u
14
+ ··· + 116u + 1
c
2
, c
5
u
15
+ 2u
14
+ ··· + 16u 1
c
3
, c
10
u
15
+ 6u
14
+ ··· 10u 4
c
4
u
15
+ 3u
14
+ ··· + 147u 167
c
6
, c
9
u
15
8u
14
+ ··· + 10u 4
c
7
u
15
u
14
+ ··· + 504u 821
c
8
, c
11
, c
12
u
15
+ 12u
13
+ ··· + 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
126y
14
+ ··· + 10676y 1
c
2
, c
5
y
15
30y
14
+ ··· + 116y 1
c
3
, c
10
y
15
+ 12y
14
+ ··· + 172y 16
c
4
y
15
+ 7y
14
+ ··· + 36973y 27889
c
6
, c
9
y
15
2y
14
+ ··· 20y 16
c
7
y
15
+ 93y
14
+ ··· + 6938598y 674041
c
8
, c
11
, c
12
y
15
+ 24y
14
+ ··· 4y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.155852 + 1.083570I
a = 0.034406 + 0.857462I
b = 0.175953 + 0.734858I
1.28315 + 1.86492I 2.71830 4.33042I
u = 0.155852 1.083570I
a = 0.034406 0.857462I
b = 0.175953 0.734858I
1.28315 1.86492I 2.71830 + 4.33042I
u = 0.259042 + 1.188320I
a = 0.462640 1.221370I
b = 1.117260 0.423512I
4.14035 2.21303I 4.08061 1.06114I
u = 0.259042 1.188320I
a = 0.462640 + 1.221370I
b = 1.117260 + 0.423512I
4.14035 + 2.21303I 4.08061 + 1.06114I
u = 1.222820 + 0.037634I
a = 0.85572 1.76718I
b = 1.14186 1.14785I
18.7646 4.2382I 2.01730 + 1.87492I
u = 1.222820 0.037634I
a = 0.85572 + 1.76718I
b = 1.14186 + 1.14785I
18.7646 + 4.2382I 2.01730 1.87492I
u = 0.598605 + 0.209178I
a = 0.372970 1.207580I
b = 0.361721 0.520276I
1.20899 + 0.97971I 3.43147 3.17255I
u = 0.598605 0.209178I
a = 0.372970 + 1.207580I
b = 0.361721 + 0.520276I
1.20899 0.97971I 3.43147 + 3.17255I
u = 0.229749 + 1.394560I
a = 0.797940 0.746930I
b = 0.762956 0.521556I
3.94947 + 4.00013I 0.81375 5.52037I
u = 0.229749 1.394560I
a = 0.797940 + 0.746930I
b = 0.762956 + 0.521556I
3.94947 4.00013I 0.81375 + 5.52037I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.62184 + 1.42460I
a = 0.48987 + 1.78057I
b = 1.09118 + 1.20044I
16.3948 + 10.7667I 0.20728 4.66775I
u = 0.62184 1.42460I
a = 0.48987 1.78057I
b = 1.09118 1.20044I
16.3948 10.7667I 0.20728 + 4.66775I
u = 0.58488 + 1.47267I
a = 0.767227 0.411092I
b = 1.21709 1.11271I
15.9766 + 2.2090I 0.250029 0.743127I
u = 0.58488 1.47267I
a = 0.767227 + 0.411092I
b = 1.21709 + 1.11271I
15.9766 2.2090I 0.250029 + 0.743127I
u = 0.309403
a = 1.74849
b = 0.762664
1.01627 11.7580
6
II. I
u
2
= h−u
10
u
9
+ · · · + b + 1, u
9
4u
7
5u
5
2u
3
+ u
2
+ a u +
1, u
11
+ u
10
+ · · · 2u 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
u
u
3
+ u
a
7
=
u
9
+ 4u
7
+ 5u
5
+ 2u
3
u
2
+ u 1
u
10
+ u
9
+ 5u
8
+ 4u
7
+ 9u
6
+ 5u
5
+ 6u
4
2u 1
a
6
=
u
10
5u
8
9u
6
6u
4
+ 2u
3
u
2
+ 3u
u
10
+ u
9
+ 5u
8
+ 4u
7
+ 9u
6
+ 5u
5
+ 6u
4
2u 1
a
2
=
u
10
+ u
9
+ 6u
8
+ 4u
7
+ 12u
6
+ 4u
5
+ 8u
4
2u
3
u
2
3u
u
8
u
7
4u
6
3u
5
5u
4
u
3
u
2
+ 3u + 1
a
1
=
u
9
+ u
8
4u
7
+ 4u
6
5u
5
+ 5u
4
2u
3
+ 2u
2
2u + 1
u
10
+ u
9
+ 4u
8
+ 3u
7
+ 4u
6
+ u
5
2u
4
3u
3
3u
2
+ u + 1
a
5
=
u
10
2u
9
6u
8
9u
7
12u
6
13u
5
7u
4
3u
3
+ 4u
2
+ 4u + 2
u
10
u
9
5u
8
4u
7
8u
6
4u
5
3u
4
+ 2u
3
+ 2u
2
+ 3u
a
9
=
u
10
+ u
9
+ 5u
8
+ 3u
7
+ 8u
6
+ u
5
+ 3u
4
4u
3
u
2
2u + 2
u
10
2u
9
6u
8
8u
7
12u
6
9u
5
7u
4
+ u
3
+ 3u
2
+ 4u + 1
a
12
=
2u
10
+ 3u
9
+ 12u
8
+ 14u
7
+ 25u
6
+ 20u
5
+ 18u
4
+ 3u
3
3u
2
9u 3
u
9
u
8
5u
7
4u
6
8u
5
4u
4
4u
3
+ 3u
2
+ u + 2
a
8
=
2u
10
u
9
9u
8
3u
7
13u
6
u
5
4u
4
+ 5u
3
+ 2u
2
+ 3u 1
2u
10
+ 2u
9
+ 9u
8
+ 7u
7
+ 14u
6
+ 6u
5
+ 7u
4
3u
3
u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
10
+ u
9
+ 9u
8
+ 4u
7
+ 16u
6
+ 4u
5
+ 12u
4
5u
3
+ u
2
7u 1
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
8u
10
+ ··· + 6u 1
c
2
u
11
+ 2u
10
2u
9
5u
8
+ 2u
7
+ 6u
6
u
5
5u
4
+ u
3
+ 3u
2
1
c
3
u
11
u
10
+ 6u
9
5u
8
+ 13u
7
8u
6
+ 11u
5
2u
4
+ u
3
+ 4u
2
2u + 1
c
4
u
11
+ 3u
10
+ ··· + 5u + 1
c
5
u
11
2u
10
2u
9
+ 5u
8
+ 2u
7
6u
6
u
5
+ 5u
4
+ u
3
3u
2
+ 1
c
6
u
11
3u
10
+ 3u
9
+ 2u
8
8u
7
+ 7u
6
+ 3u
5
9u
4
+ 5u
3
+ 2u
2
3u + 1
c
7
u
11
+ u
10
+ ··· + 20u
2
1
c
8
u
11
+ 7u
9
u
8
+ 19u
7
4u
6
+ 24u
5
5u
4
+ 12u
3
u
2
+ 1
c
9
u
11
+ 3u
10
+ 3u
9
2u
8
8u
7
7u
6
+ 3u
5
+ 9u
4
+ 5u
3
2u
2
3u 1
c
10
u
11
+ u
10
+ 6u
9
+ 5u
8
+ 13u
7
+ 8u
6
+ 11u
5
+ 2u
4
+ u
3
4u
2
2u 1
c
11
, c
12
u
11
+ 7u
9
+ u
8
+ 19u
7
+ 4u
6
+ 24u
5
+ 5u
4
+ 12u
3
+ u
2
1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
8y
10
+ ··· 2y 1
c
2
, c
5
y
11
8y
10
+ ··· + 6y 1
c
3
, c
10
y
11
+ 11y
10
+ ··· 4y 1
c
4
y
11
3y
10
+ ··· y 1
c
6
, c
9
y
11
3y
10
+ ··· + 5y 1
c
7
y
11
13y
10
+ ··· + 40y 1
c
8
, c
11
, c
12
y
11
+ 14y
10
+ ··· + 2y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.555245 + 0.715930I
a = 1.365260 0.336962I
b = 0.541266 0.326647I
4.78843 + 2.37248I 1.75049 2.45336I
u = 0.555245 0.715930I
a = 1.365260 + 0.336962I
b = 0.541266 + 0.326647I
4.78843 2.37248I 1.75049 + 2.45336I
u = 0.038740 + 1.275640I
a = 0.634053 + 1.055000I
b = 0.481027 + 1.188790I
1.63477 1.57892I 0.09382 + 1.50767I
u = 0.038740 1.275640I
a = 0.634053 1.055000I
b = 0.481027 1.188790I
1.63477 + 1.57892I 0.09382 1.50767I
u = 0.671399
a = 0.781778
b = 0.881691
0.262796 1.63010
u = 0.261659 + 1.352930I
a = 0.528351 0.791252I
b = 0.983118 0.233645I
4.64860 3.37974I 7.26008 + 1.85613I
u = 0.261659 1.352930I
a = 0.528351 + 0.791252I
b = 0.983118 + 0.233645I
4.64860 + 3.37974I 7.26008 1.85613I
u = 0.20259 + 1.44175I
a = 0.349549 0.489012I
b = 1.265600 0.591843I
1.36871 + 4.84258I 1.85800 4.12088I
u = 0.20259 1.44175I
a = 0.349549 + 0.489012I
b = 1.265600 + 0.591843I
1.36871 4.84258I 1.85800 + 4.12088I
u = 0.300781 + 0.431635I
a = 0.980876 + 0.585854I
b = 0.636073 0.679052I
4.66031 + 2.37297I 0.14637 2.89222I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.300781 0.431635I
a = 0.980876 0.585854I
b = 0.636073 + 0.679052I
4.66031 2.37297I 0.14637 + 2.89222I
11
III. I
u
3
= hb u + 1, a
2
5au + a + u 4, u
2
u + 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
3
=
u
u 1
a
7
=
a
u 1
a
6
=
a u + 1
u 1
a
2
=
au 3a + 4u 1
au + 2u 3
a
1
=
2au 5a + 5u 1
2au a + 3u 4
a
5
=
4au 5a + 3u + 1
a + u
a
9
=
au a + u + 1
u
a
12
=
au + u + 1
au a + u + 1
a
8
=
2a u
au
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 11u
3
+ 45u
2
+ 44u + 16
c
2
, c
5
u
4
+ 3u
3
u
2
6u + 4
c
3
, c
10
(u
2
u + 1)
2
c
4
u
4
+ 6u
3
+ 23u
2
+ 30u + 13
c
6
, c
9
(u
2
+ u + 1)
2
c
7
u
4
+ 5u
3
+ 5u
2
2u + 4
c
8
, c
11
, c
12
u
4
+ 2u
3
+ 5u
2
+ 4u + 7
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
31y
3
+ 1089y
2
496y + 256
c
2
, c
5
y
4
11y
3
+ 45y
2
44y + 16
c
3
, c
6
, c
9
c
10
(y
2
+ y + 1)
2
c
4
y
4
+ 10y
3
+ 195y
2
302y + 169
c
7
y
4
15y
3
+ 53y
2
+ 36y + 16
c
8
, c
11
, c
12
y
4
+ 6y
3
+ 23y
2
+ 54y + 49
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.208440 + 0.922644I
b = 0.500000 + 0.866025I
4.93480 4.05977I 2.00000 + 6.92820I
u = 0.500000 + 0.866025I
a = 1.70844 + 3.40748I
b = 0.500000 + 0.866025I
4.93480 4.05977I 2.00000 + 6.92820I
u = 0.500000 0.866025I
a = 0.208440 0.922644I
b = 0.500000 0.866025I
4.93480 + 4.05977I 2.00000 6.92820I
u = 0.500000 0.866025I
a = 1.70844 3.40748I
b = 0.500000 0.866025I
4.93480 + 4.05977I 2.00000 6.92820I
15
IV. I
u
4
= hb + u, a
2
+ 3au + 2u, u
2
u + 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
3
=
u
u 1
a
7
=
a
u
a
6
=
a + u
u
a
2
=
au + 1
a + 2u
a
1
=
3au a
au a + u
a
5
=
3au + 3a 2u + 2
au + a + u
a
9
=
au u + 2
u 1
a
12
=
au + 3u
au a + u 2
a
8
=
2a + 1
au
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 2u
3
+ 15u
2
+ 50u + 49
c
2
, c
5
u
4
u
2
+ 6u + 7
c
3
, c
10
(u
2
u + 1)
2
c
4
u
4
3u
3
+ 5u
2
+ 6u + 4
c
6
, c
9
(u
2
+ u + 1)
2
c
7
u
4
4u
3
+ 5u
2
+ 4u + 1
c
8
, c
11
, c
12
u
4
u
3
+ 5u
2
2u + 4
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
+ 26y
3
+ 123y
2
1030y + 2401
c
2
, c
5
y
4
2y
3
+ 15y
2
50y + 49
c
3
, c
6
, c
9
c
10
(y
2
+ y + 1)
2
c
4
y
4
+ y
3
+ 69y
2
+ 4y + 16
c
7
y
4
6y
3
+ 59y
2
6y + 1
c
8
, c
11
, c
12
y
4
+ 9y
3
+ 29y
2
+ 36y + 16
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.675835 + 0.160585I
b = 0.500000 0.866025I
4.93480 2.00000
u = 0.500000 + 0.866025I
a = 0.82417 2.75866I
b = 0.500000 0.866025I
4.93480 2.00000
u = 0.500000 0.866025I
a = 0.675835 0.160585I
b = 0.500000 + 0.866025I
4.93480 2.00000
u = 0.500000 0.866025I
a = 0.82417 + 2.75866I
b = 0.500000 + 0.866025I
4.93480 2.00000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 2u
3
+ 15u
2
+ 50u + 49)(u
4
+ 11u
3
+ 45u
2
+ 44u + 16)
· (u
11
8u
10
+ ··· + 6u 1)(u
15
+ 30u
14
+ ··· + 116u + 1)
c
2
(u
4
u
2
+ 6u + 7)(u
4
+ 3u
3
u
2
6u + 4)
· (u
11
+ 2u
10
2u
9
5u
8
+ 2u
7
+ 6u
6
u
5
5u
4
+ u
3
+ 3u
2
1)
· (u
15
+ 2u
14
+ ··· + 16u 1)
c
3
(u
2
u + 1)
4
· (u
11
u
10
+ 6u
9
5u
8
+ 13u
7
8u
6
+ 11u
5
2u
4
+ u
3
+ 4u
2
2u + 1)
· (u
15
+ 6u
14
+ ··· 10u 4)
c
4
(u
4
3u
3
+ 5u
2
+ 6u + 4)(u
4
+ 6u
3
+ 23u
2
+ 30u + 13)
· (u
11
+ 3u
10
+ ··· + 5u + 1)(u
15
+ 3u
14
+ ··· + 147u 167)
c
5
(u
4
u
2
+ 6u + 7)(u
4
+ 3u
3
u
2
6u + 4)
· (u
11
2u
10
2u
9
+ 5u
8
+ 2u
7
6u
6
u
5
+ 5u
4
+ u
3
3u
2
+ 1)
· (u
15
+ 2u
14
+ ··· + 16u 1)
c
6
(u
2
+ u + 1)
4
· (u
11
3u
10
+ 3u
9
+ 2u
8
8u
7
+ 7u
6
+ 3u
5
9u
4
+ 5u
3
+ 2u
2
3u + 1)
· (u
15
8u
14
+ ··· + 10u 4)
c
7
(u
4
4u
3
+ 5u
2
+ 4u + 1)(u
4
+ 5u
3
+ 5u
2
2u + 4)
· (u
11
+ u
10
+ ··· + 20u
2
1)(u
15
u
14
+ ··· + 504u 821)
c
8
(u
4
u
3
+ 5u
2
2u + 4)(u
4
+ 2u
3
+ 5u
2
+ 4u + 7)
· (u
11
+ 7u
9
u
8
+ 19u
7
4u
6
+ 24u
5
5u
4
+ 12u
3
u
2
+ 1)
· (u
15
+ 12u
13
+ ··· + 2u 1)
c
9
(u
2
+ u + 1)
4
· (u
11
+ 3u
10
+ 3u
9
2u
8
8u
7
7u
6
+ 3u
5
+ 9u
4
+ 5u
3
2u
2
3u 1)
· (u
15
8u
14
+ ··· + 10u 4)
c
10
(u
2
u + 1)
4
· (u
11
+ u
10
+ 6u
9
+ 5u
8
+ 13u
7
+ 8u
6
+ 11u
5
+ 2u
4
+ u
3
4u
2
2u 1)
· (u
15
+ 6u
14
+ ··· 10u 4)
c
11
, c
12
(u
4
u
3
+ 5u
2
2u + 4)(u
4
+ 2u
3
+ 5u
2
+ 4u + 7)
· (u
11
+ 7u
9
+ u
8
+ 19u
7
+ 4u
6
+ 24u
5
+ 5u
4
+ 12u
3
+ u
2
1)
· (u
15
+ 12u
13
+ ··· + 2u 1)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
4
31y
3
+ 1089y
2
496y + 256)
· (y
4
+ 26y
3
+ ··· 1030y + 2401)(y
11
8y
10
+ ··· 2y 1)
· (y
15
126y
14
+ ··· + 10676y 1)
c
2
, c
5
(y
4
11y
3
+ 45y
2
44y + 16)(y
4
2y
3
+ 15y
2
50y + 49)
· (y
11
8y
10
+ ··· + 6y 1)(y
15
30y
14
+ ··· + 116y 1)
c
3
, c
10
((y
2
+ y + 1)
4
)(y
11
+ 11y
10
+ ··· 4y 1)
· (y
15
+ 12y
14
+ ··· + 172y 16)
c
4
(y
4
+ y
3
+ 69y
2
+ 4y + 16)(y
4
+ 10y
3
+ 195y
2
302y + 169)
· (y
11
3y
10
+ ··· y 1)(y
15
+ 7y
14
+ ··· + 36973y 27889)
c
6
, c
9
((y
2
+ y + 1)
4
)(y
11
3y
10
+ ··· + 5y 1)(y
15
2y
14
+ ··· 20y 16)
c
7
(y
4
15y
3
+ 53y
2
+ 36y + 16)(y
4
6y
3
+ 59y
2
6y + 1)
· (y
11
13y
10
+ ··· + 40y 1)
· (y
15
+ 93y
14
+ ··· + 6938598y 674041)
c
8
, c
11
, c
12
(y
4
+ 6y
3
+ 23y
2
+ 54y + 49)(y
4
+ 9y
3
+ 29y
2
+ 36y + 16)
· (y
11
+ 14y
10
+ ··· + 2y 1)(y
15
+ 24y
14
+ ··· 4y 1)
21