12n
0417
(K12n
0417
)
A knot diagram
1
Linearized knot diagam
3 6 8 11 2 10 3 7 1 4 10 7
Solving Sequence
3,7
8
4,10
11 5 6 2 1 9 12
c
7
c
3
c
10
c
4
c
6
c
2
c
1
c
9
c
12
c
5
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h536u
11
335u
10
+ ··· + 239b + 523, 947u
11
+ 562u
10
+ ··· + 239a 1324,
u
12
4u
10
+ 13u
8
2u
7
24u
6
3u
5
+ 18u
4
+ 3u
3
7u
2
u + 1i
I
u
2
= hu
6
3u
4
+ 3u
2
+ b + u 1, u
6
+ u
5
+ 4u
4
3u
3
5u
2
+ a + 2u + 3, u
7
4u
5
+ 6u
3
+ u
2
4u 1i
I
u
3
= h68215362482207u
19
+ 127486835274380u
18
+ ··· + 1057281252711b + 705066157444833,
298873575023330u
19
+ 558685165549478u
18
+ ··· + 3171843758133a + 3089653339595532,
u
20
+ u
19
+ ··· + 18u 9i
I
u
4
= hu
6
3u
4
u
3
+ 2u
2
+ b 2, u
7
+ 3u
5
+ u
4
2u
3
+ u
2
+ a + 2u 2, u
8
4u
6
u
5
+ 5u
4
+ u
3
4u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h536u
11
335u
10
+ · · · + 239b + 523, 947u
11
+ 562u
10
+ · · · +
239a 1324, u
12
4u
10
+ · · · u + 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
3.96234u
11
2.35146u
10
+ ··· 11.8033u + 5.53975
2.24268u
11
+ 1.40167u
10
+ ··· + 5.48954u 2.18828
a
11
=
3.96234u
11
2.35146u
10
+ ··· 11.8033u + 5.53975
2.24268u
11
+ 1.40167u
10
+ ··· + 5.48954u 2.18828
a
5
=
2.35146u
11
1.71967u
10
+ ··· 10.5021u + 3.96234
1.40167u
11
+ 1.25105u
10
+ ··· + 5.43096u 2.24268
a
6
=
0.589958u
11
0.493724u
10
+ ··· + 1.58577u + 0.543933
2.71130u
11
1.69456u
10
+ ··· 8.15900u + 3.13808
a
2
=
3.23431u
11
2.14644u
10
+ ··· 7.33473u + 3.97490
0.974895u
11
0.234310u
10
+ ··· 3.53556u + 1.35983
a
1
=
3.23431u
11
2.14644u
10
+ ··· 7.33473u + 3.97490
0.991632u
11
+ 0.744770u
10
+ ··· + 1.84519u 0.786611
a
9
=
u
2
+ 1
u
2
a
12
=
2.24268u
11
1.40167u
10
+ ··· 5.48954u + 3.18828
0.991632u
11
+ 0.744770u
10
+ ··· + 1.84519u 0.786611
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1675
239
u
11
+
1734
239
u
10
+
5437
239
u
9
5818
239
u
8
17601
239
u
7
+
22148
239
u
6
+
23370
239
u
5
22069
239
u
4
17044
239
u
3
+
13395
239
u
2
+
5056
239
u
6743
239
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 6u
11
+ ··· + 848u + 64
c
2
, c
5
u
12
+ 8u
11
+ ··· + 52u + 8
c
3
, c
4
, c
7
c
10
u
12
4u
10
+ 13u
8
+ 2u
7
24u
6
+ 3u
5
+ 18u
4
3u
3
7u
2
+ u + 1
c
6
, c
9
u
12
+ u
11
+ ··· + 8u + 1
c
8
, c
11
u
12
+ 8u
11
+ ··· + 15u + 1
c
12
u
12
+ 10u
11
+ ··· 196u 20
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
+ 18y
11
+ ··· 419072y + 4096
c
2
, c
5
y
12
6y
11
+ ··· 848y + 64
c
3
, c
4
, c
7
c
10
y
12
8y
11
+ ··· 15y + 1
c
6
, c
9
y
12
+ 11y
11
+ ··· 16y + 1
c
8
, c
11
y
12
+ 20y
11
+ ··· 43y + 1
c
12
y
12
40y
11
+ ··· 4496y + 400
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.790520 + 0.392533I
a = 0.333077 0.431942I
b = 0.908183 + 0.435278I
3.78101 + 0.45111I 18.5516 2.4488I
u = 0.790520 0.392533I
a = 0.333077 + 0.431942I
b = 0.908183 0.435278I
3.78101 0.45111I 18.5516 + 2.4488I
u = 0.736086 + 0.101541I
a = 1.55509 + 1.56812I
b = 0.505873 0.967109I
0.21900 + 4.19269I 13.9112 5.3421I
u = 0.736086 0.101541I
a = 1.55509 1.56812I
b = 0.505873 + 0.967109I
0.21900 4.19269I 13.9112 + 5.3421I
u = 0.653112 + 0.249393I
a = 1.71916 0.21403I
b = 0.023047 + 0.696086I
0.134851 + 0.667722I 12.59936 + 0.82514I
u = 0.653112 0.249393I
a = 1.71916 + 0.21403I
b = 0.023047 0.696086I
0.134851 0.667722I 12.59936 0.82514I
u = 1.54915
a = 0.373370
b = 0.477327
15.2923 6.68440
u = 0.403757
a = 0.897573
b = 0.248749
0.603932 16.3720
u = 1.36080 + 0.93328I
a = 0.627613 0.831271I
b = 1.09936 + 1.61015I
5.78267 + 12.88920I 12.7241 6.3496I
u = 1.36080 0.93328I
a = 0.627613 + 0.831271I
b = 1.09936 1.61015I
5.78267 12.88920I 12.7241 + 6.3496I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.25783 + 1.10048I
a = 0.575658 + 0.547864I
b = 0.15469 1.93823I
7.12277 3.83904I 10.68570 + 2.08253I
u = 1.25783 1.10048I
a = 0.575658 0.547864I
b = 0.15469 + 1.93823I
7.12277 + 3.83904I 10.68570 2.08253I
6
II. I
u
2
= hu
6
3u
4
+ 3u
2
+ b + u 1, u
6
+ u
5
+ 4u
4
3u
3
5u
2
+ a + 2u +
3, u
7
4u
5
+ 6u
3
+ u
2
4u 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
u
6
u
5
4u
4
+ 3u
3
+ 5u
2
2u 3
u
6
+ 3u
4
3u
2
u + 1
a
11
=
u
6
u
5
4u
4
+ 3u
3
+ 6u
2
2u 3
u
6
+ 4u
4
4u
2
u + 1
a
5
=
u
6
+ 3u
4
3u
2
+ 1
u
3
2u 1
a
6
=
u
6
+ 4u
4
u
3
6u
2
+ u + 4
u
5
u
4
+ 3u
3
+ 2u
2
3u 2
a
2
=
u
6
4u
4
+ 5u
2
+ u 3
u + 1
a
1
=
u
6
4u
4
+ 5u
2
+ u 3
u
4
u
2
+ 1
a
9
=
u
2
+ 1
u
2
a
12
=
u
6
3u
4
+ 4u
2
+ u 2
u
4
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
6
+ 4u
5
+ 13u
4
10u
3
11u
2
+ 4u 8
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
7
7u
6
+ 21u
5
37u
4
+ 37u
3
24u
2
+ 9u 1
c
2
u
7
+ u
6
3u
5
5u
4
+ u
3
+ 4u
2
+ u 1
c
3
, c
10
u
7
4u
5
+ 6u
3
u
2
4u + 1
c
4
, c
7
u
7
4u
5
+ 6u
3
+ u
2
4u 1
c
5
u
7
u
6
3u
5
+ 5u
4
+ u
3
4u
2
+ u + 1
c
6
, c
9
u
7
+ u
6
+ u
4
u
3
u
2
u 1
c
8
, c
11
u
7
+ 8u
6
+ 28u
5
+ 56u
4
+ 68u
3
+ 49u
2
+ 18u + 1
c
12
u
7
+ 7u
6
+ 17u
5
+ 30u
4
+ 45u
3
+ 27u
2
+ 6u + 4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
7
7y
6
3y
5
133y
4
43y
3
+ 16y
2
+ 33y 1
c
2
, c
5
y
7
7y
6
+ 21y
5
37y
4
+ 37y
3
24y
2
+ 9y 1
c
3
, c
4
, c
7
c
10
y
7
8y
6
+ 28y
5
56y
4
+ 68y
3
49y
2
+ 18y 1
c
6
, c
9
y
7
y
6
4y
5
y
4
+ 5y
3
+ 3y
2
y 1
c
8
, c
11
y
7
8y
6
+ 24y
5
76y
4
+ 128y
3
65y
2
+ 226y 1
c
12
y
7
15y
6
41y
5
+ 264y
4
+ 553y
3
429y
2
180y 16
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.970575 + 0.467764I
a = 0.61390 + 1.62676I
b = 0.307176 1.007690I
0.15907 + 5.95632I 10.30399 9.49474I
u = 0.970575 0.467764I
a = 0.61390 1.62676I
b = 0.307176 + 1.007690I
0.15907 5.95632I 10.30399 + 9.49474I
u = 1.28252
a = 0.853969
b = 1.55070
9.96367 15.2580
u = 1.219310 + 0.473158I
a = 0.831288 0.514652I
b = 0.187678 + 0.823913I
1.96867 1.64297I 12.60937 + 1.83263I
u = 1.219310 0.473158I
a = 0.831288 + 0.514652I
b = 0.187678 0.823913I
1.96867 + 1.64297I 12.60937 1.83263I
u = 1.52200
a = 0.182606
b = 0.759603
15.6521 29.3740
u = 0.257994
a = 2.21901
b = 1.07131
3.02746 9.54090
10
III.
I
u
3
= h6.82 × 10
13
u
19
+ 1.27 × 10
14
u
18
+ · · · + 1.06 × 10
12
b + 7.05 × 10
14
, 2.99 ×
10
14
u
19
+5.59×10
14
u
18
+· · ·+3.17×10
12
a+3.09×10
15
, u
20
+u
19
+· · ·+18u9i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
94.2271u
19
176.139u
18
+ ··· + 828.728u 974.087
64.5196u
19
120.580u
18
+ ··· + 565.622u 666.867
a
11
=
27.9506u
19
52.2643u
18
+ ··· + 246.326u 288.781
80.6876u
19
150.746u
18
+ ··· + 707.746u 833.790
a
5
=
4.98357u
19
+ 9.51307u
18
+ ··· 45.9289u + 48.9194
99.9143u
19
186.269u
18
+ ··· + 873.984u 1037.72
a
6
=
68.8452u
19
128.348u
18
+ ··· + 604.749u 717.167
76.2363u
19
142.302u
18
+ ··· + 674.421u 794.311
a
2
=
69.0216u
19
+ 129.223u
18
+ ··· 608.826u + 712.093
105.226u
19
+ 196.557u
18
+ ··· 922.384u + 1090.86
a
1
=
69.0216u
19
+ 129.223u
18
+ ··· 608.826u + 712.093
52.6964u
19
+ 98.1510u
18
+ ··· 459.959u + 549.054
a
9
=
u
2
+ 1
u
2
a
12
=
121.718u
19
+ 227.374u
18
+ ··· 1068.79u + 1261.15
52.6964u
19
+ 98.1510u
18
+ ··· 459.959u + 549.054
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
128749727823573
352427084237
u
19
240297448875642
352427084237
u
18
+ ··· +
1127484403652596
352427084237
u
1338735790487557
352427084237
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
10
+ u
9
+ 8u
8
+ 12u
7
8u
6
6u
5
4u
4
+ 21u
3
+ 21u
2
+ 14u + 1)
2
c
2
, c
5
(u
10
3u
9
+ 4u
8
2u
7
+ 2u
6
4u
5
u
3
+ 5u
2
2u 1)
2
c
3
, c
4
, c
7
c
10
u
20
u
19
+ ··· 18u 9
c
6
, c
9
u
20
3u
19
+ ··· 6u 1
c
8
, c
11
u
20
+ 5u
19
+ ··· + 576u + 81
c
12
(u
10
4u
9
u
8
+ 23u
7
31u
6
+ 7u
5
+ 6u
4
+ 4u
3
10u
2
+ 5u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ 15y
9
+ ··· 154y + 1)
2
c
2
, c
5
(y
10
y
9
+ 8y
8
12y
7
8y
6
+ 6y
5
4y
4
21y
3
+ 21y
2
14y + 1)
2
c
3
, c
4
, c
7
c
10
y
20
5y
19
+ ··· 576y + 81
c
6
, c
9
y
20
+ 9y
19
+ ··· + 144y + 1
c
8
, c
11
y
20
+ 7y
19
+ ··· 23004y + 6561
c
12
(y
10
18y
9
+ ··· 5y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.388171 + 0.947508I
a = 0.0090099 + 0.1229930I
b = 1.35420 + 0.42025I
2.99056 3.56450I 10.26354 + 3.14852I
u = 0.388171 0.947508I
a = 0.0090099 0.1229930I
b = 1.35420 0.42025I
2.99056 + 3.56450I 10.26354 3.14852I
u = 0.992473 + 0.348531I
a = 0.17968 + 1.68020I
b = 0.0378360 0.0943430I
1.26454 + 5.52673I 18.1850 5.9531I
u = 0.992473 0.348531I
a = 0.17968 1.68020I
b = 0.0378360 + 0.0943430I
1.26454 5.52673I 18.1850 + 5.9531I
u = 0.872812 + 0.011238I
a = 1.102060 0.425174I
b = 0.274355 0.471998I
0.136787 0.639555I 12.53187 0.40948I
u = 0.872812 0.011238I
a = 1.102060 + 0.425174I
b = 0.274355 + 0.471998I
0.136787 + 0.639555I 12.53187 + 0.40948I
u = 0.866881
a = 1.65529
b = 1.53301
12.1512 23.7630
u = 1.001390 + 0.640706I
a = 0.418488 1.217960I
b = 0.531023 + 1.236570I
1.26454 5.52673I 18.1850 + 5.9531I
u = 1.001390 0.640706I
a = 0.418488 + 1.217960I
b = 0.531023 1.236570I
1.26454 + 5.52673I 18.1850 5.9531I
u = 0.468108 + 0.513336I
a = 1.40798 1.10900I
b = 0.102915 + 0.895664I
0.136787 + 0.639555I 12.53187 + 0.40948I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.468108 0.513336I
a = 1.40798 + 1.10900I
b = 0.102915 0.895664I
0.136787 0.639555I 12.53187 0.40948I
u = 0.605174
a = 0.762515
b = 1.92560
7.31763 2.93760
u = 1.07994 + 0.93851I
a = 0.617818 + 0.827405I
b = 0.59658 1.52167I
2.99056 + 3.56450I 10.26354 3.14852I
u = 1.07994 0.93851I
a = 0.617818 0.827405I
b = 0.59658 + 1.52167I
2.99056 3.56450I 10.26354 + 3.14852I
u = 1.45778
a = 1.23121
b = 0.970112
7.31763 2.93760
u = 0.91975 + 1.23722I
a = 0.446520 + 0.963248I
b = 0.95499 1.76369I
8.14515 4.60681I 10.16934 + 2.47582I
u = 0.91975 1.23722I
a = 0.446520 0.963248I
b = 0.95499 + 1.76369I
8.14515 + 4.60681I 10.16934 2.47582I
u = 0.63701 + 1.40514I
a = 0.447242 0.786229I
b = 0.22554 + 1.94609I
8.14515 4.60681I 10.16934 + 2.47582I
u = 0.63701 1.40514I
a = 0.447242 + 0.786229I
b = 0.22554 1.94609I
8.14515 + 4.60681I 10.16934 2.47582I
u = 1.68554
a = 0.225221
b = 0.928948
12.1512 23.7630
15
IV. I
u
4
= hu
6
3u
4
u
3
+ 2u
2
+ b 2, u
7
+ 3u
5
+ u
4
2u
3
+ u
2
+ a +
2u 2, u
8
4u
6
u
5
+ 5u
4
+ u
3
4u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
u
7
3u
5
u
4
+ 2u
3
u
2
2u + 2
u
6
+ 3u
4
+ u
3
2u
2
+ 2
a
11
=
u
7
3u
5
u
4
+ 2u
3
u
2
2u + 1
u
6
+ 3u
4
+ u
3
3u
2
+ 3
a
5
=
u
7
u
6
4u
5
+ 2u
4
+ 6u
3
u
2
4u + 2
3u
7
11u
5
3u
4
+ 11u
3
+ 2u
2
8u
a
6
=
2u
7
+ 7u
5
+ 2u
4
6u
3
u
2
+ 4u 1
u
7
+ 2u
6
3u
5
8u
4
+ 6u
2
u 4
a
2
=
u
7
+ u
6
+ 4u
5
3u
4
6u
3
+ 4u
2
+ 5u 3
u
6
4u
4
u
3
+ 5u
2
+ 2u 4
a
1
=
u
7
+ u
6
+ 4u
5
3u
4
6u
3
+ 4u
2
+ 5u 3
u
6
4u
4
u
3
+ 4u
2
+ u 3
a
9
=
u
2
+ 1
u
2
a
12
=
u
7
+ 2u
6
+ 4u
5
7u
4
7u
3
+ 8u
2
+ 6u 6
u
6
4u
4
u
3
+ 4u
2
+ u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 15u
7
+ 5u
6
53u
5
35u
4
+ 49u
3
+ 28u
2
33u 25
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
4u
3
+ 6u
2
5u + 1)
2
c
2
(u
4
2u
2
+ u + 1)
2
c
3
, c
10
u
8
4u
6
+ u
5
+ 5u
4
u
3
4u
2
+ 1
c
4
, c
7
u
8
4u
6
u
5
+ 5u
4
+ u
3
4u
2
+ 1
c
5
(u
4
2u
2
u + 1)
2
c
6
, c
9
u
8
4u
7
+ 5u
6
u
5
4u
4
+ 5u
3
2u
2
+ 1
c
8
, c
11
u
8
+ 8u
7
+ 26u
6
+ 49u
5
+ 61u
4
+ 49u
3
+ 26u
2
+ 8u + 1
c
12
(u
4
4u
3
+ 4u
2
u + 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
4y
3
2y
2
13y + 1)
2
c
2
, c
5
(y
4
4y
3
+ 6y
2
5y + 1)
2
c
3
, c
4
, c
7
c
10
y
8
8y
7
+ 26y
6
49y
5
+ 61y
4
49y
3
+ 26y
2
8y + 1
c
6
, c
9
y
8
6y
7
+ 9y
6
5y
5
+ 8y
4
+ y
3
4y
2
4y + 1
c
8
, c
11
y
8
12y
7
+ 14y
6
+ 39y
5
+ 145y
4
+ 39y
3
+ 14y
2
12y + 1
c
12
(y
4
8y
3
+ 10y
2
+ 7y + 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.744022 + 0.443105I
a = 1.42333 1.57383I
b = 0.758066 + 0.777626I
0.24852 1.96274I 13.4834 + 4.4361I
u = 0.744022 0.443105I
a = 1.42333 + 1.57383I
b = 0.758066 0.777626I
0.24852 + 1.96274I 13.4834 4.4361I
u = 0.992148 + 0.590877I
a = 1.145330 + 0.258001I
b = 0.241934 0.777626I
0.24852 1.96274I 13.4834 + 4.4361I
u = 0.992148 0.590877I
a = 1.145330 0.258001I
b = 0.241934 + 0.777626I
0.24852 + 1.96274I 13.4834 4.4361I
u = 0.701343
a = 0.127840
b = 1.96805
7.58970 33.0820
u = 1.42584
a = 1.41328
b = 0.968048
7.58970 33.0820
u = 0.561188
a = 2.50424
b = 1.45971
11.6525 6.95090
u = 1.78193
a = 0.356111
b = 0.459710
11.6525 6.95090
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
4
4u
3
+ 6u
2
5u + 1)
2
· (u
7
7u
6
+ 21u
5
37u
4
+ 37u
3
24u
2
+ 9u 1)
· (u
10
+ u
9
+ 8u
8
+ 12u
7
8u
6
6u
5
4u
4
+ 21u
3
+ 21u
2
+ 14u + 1)
2
· (u
12
+ 6u
11
+ ··· + 848u + 64)
c
2
(u
4
2u
2
+ u + 1)
2
(u
7
+ u
6
3u
5
5u
4
+ u
3
+ 4u
2
+ u 1)
· (u
10
3u
9
+ 4u
8
2u
7
+ 2u
6
4u
5
u
3
+ 5u
2
2u 1)
2
· (u
12
+ 8u
11
+ ··· + 52u + 8)
c
3
, c
10
(u
7
4u
5
+ 6u
3
u
2
4u + 1)(u
8
4u
6
+ u
5
+ 5u
4
u
3
4u
2
+ 1)
· (u
12
4u
10
+ 13u
8
+ 2u
7
24u
6
+ 3u
5
+ 18u
4
3u
3
7u
2
+ u + 1)
· (u
20
u
19
+ ··· 18u 9)
c
4
, c
7
(u
7
4u
5
+ 6u
3
+ u
2
4u 1)(u
8
4u
6
u
5
+ 5u
4
+ u
3
4u
2
+ 1)
· (u
12
4u
10
+ 13u
8
+ 2u
7
24u
6
+ 3u
5
+ 18u
4
3u
3
7u
2
+ u + 1)
· (u
20
u
19
+ ··· 18u 9)
c
5
(u
4
2u
2
u + 1)
2
(u
7
u
6
3u
5
+ 5u
4
+ u
3
4u
2
+ u + 1)
· (u
10
3u
9
+ 4u
8
2u
7
+ 2u
6
4u
5
u
3
+ 5u
2
2u 1)
2
· (u
12
+ 8u
11
+ ··· + 52u + 8)
c
6
, c
9
(u
7
+ u
6
+ u
4
u
3
u
2
u 1)(u
8
4u
7
+ ··· 2u
2
+ 1)
· (u
12
+ u
11
+ ··· + 8u + 1)(u
20
3u
19
+ ··· 6u 1)
c
8
, c
11
(u
7
+ 8u
6
+ 28u
5
+ 56u
4
+ 68u
3
+ 49u
2
+ 18u + 1)
· (u
8
+ 8u
7
+ 26u
6
+ 49u
5
+ 61u
4
+ 49u
3
+ 26u
2
+ 8u + 1)
· (u
12
+ 8u
11
+ ··· + 15u + 1)(u
20
+ 5u
19
+ ··· + 576u + 81)
c
12
(u
4
4u
3
+ 4u
2
u + 1)
2
· (u
7
+ 7u
6
+ 17u
5
+ 30u
4
+ 45u
3
+ 27u
2
+ 6u + 4)
· (u
10
4u
9
u
8
+ 23u
7
31u
6
+ 7u
5
+ 6u
4
+ 4u
3
10u
2
+ 5u 1)
2
· (u
12
+ 10u
11
+ ··· 196u 20)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
4
4y
3
2y
2
13y + 1)
2
· (y
7
7y
6
3y
5
133y
4
43y
3
+ 16y
2
+ 33y 1)
· (y
10
+ 15y
9
+ ··· 154y + 1)
2
· (y
12
+ 18y
11
+ ··· 419072y + 4096)
c
2
, c
5
(y
4
4y
3
+ 6y
2
5y + 1)
2
· (y
7
7y
6
+ 21y
5
37y
4
+ 37y
3
24y
2
+ 9y 1)
· (y
10
y
9
+ 8y
8
12y
7
8y
6
+ 6y
5
4y
4
21y
3
+ 21y
2
14y + 1)
2
· (y
12
6y
11
+ ··· 848y + 64)
c
3
, c
4
, c
7
c
10
(y
7
8y
6
+ 28y
5
56y
4
+ 68y
3
49y
2
+ 18y 1)
· (y
8
8y
7
+ 26y
6
49y
5
+ 61y
4
49y
3
+ 26y
2
8y + 1)
· (y
12
8y
11
+ ··· 15y + 1)(y
20
5y
19
+ ··· 576y + 81)
c
6
, c
9
(y
7
y
6
4y
5
y
4
+ 5y
3
+ 3y
2
y 1)
· (y
8
6y
7
+ 9y
6
5y
5
+ 8y
4
+ y
3
4y
2
4y + 1)
· (y
12
+ 11y
11
+ ··· 16y + 1)(y
20
+ 9y
19
+ ··· + 144y + 1)
c
8
, c
11
(y
7
8y
6
+ 24y
5
76y
4
+ 128y
3
65y
2
+ 226y 1)
· (y
8
12y
7
+ 14y
6
+ 39y
5
+ 145y
4
+ 39y
3
+ 14y
2
12y + 1)
· (y
12
+ 20y
11
+ ··· 43y + 1)(y
20
+ 7y
19
+ ··· 23004y + 6561)
c
12
(y
4
8y
3
+ 10y
2
+ 7y + 1)
2
· (y
7
15y
6
41y
5
+ 264y
4
+ 553y
3
429y
2
180y 16)
· ((y
10
18y
9
+ ··· 5y + 1)
2
)(y
12
40y
11
+ ··· 4496y + 400)
21