12n
0418
(K12n
0418
)
A knot diagram
1
Linearized knot diagam
3 6 8 11 2 9 3 12 6 4 10 7
Solving Sequence
9,12 3,8
4 7 1 6 10 2 5 11
c
8
c
3
c
7
c
12
c
6
c
9
c
2
c
5
c
11
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.26934 × 10
56
u
30
1.00911 × 10
57
u
29
+ ··· + 1.14470 × 10
59
b 5.53521 × 10
58
,
1.15992 × 10
59
u
30
2.78534 × 10
59
u
29
+ ··· + 6.06690 × 10
60
a + 1.84407 × 10
61
,
u
31
+ 2u
30
+ ··· 374u + 53i
I
u
2
= h2288080379940u
21
13342880074590u
20
+ ··· + 13036173440749b + 28488698280106,
144701135614458u
21
482252040257618u
20
+ ··· + 91253214085243a 23683083359794,
u
22
3u
21
+ ··· u 1i
* 2 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.27 × 10
56
u
30
1.01 × 10
57
u
29
+ · · · + 1.14 × 10
59
b 5.54 ×
10
58
, 1.16 × 10
59
u
30
2.79 × 10
59
u
29
+ · · · + 6.07 × 10
60
a + 1.84 ×
10
61
, u
31
+ 2u
30
+ · · · 374u + 53i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
3
=
0.0191188u
30
+ 0.0459104u
29
+ ··· + 8.09643u 3.03956
0.00285607u
30
+ 0.00881553u
29
+ ··· + 0.315937u + 0.483552
a
8
=
1
u
2
a
4
=
0.0114818u
30
+ 0.0242158u
29
+ ··· + 5.92417u 3.11645
0.00728253u
30
+ 0.0208089u
29
+ ··· + 2.31246u + 0.143262
a
7
=
0.0125194u
30
0.0332989u
29
+ ··· 3.31812u + 2.11184
0.00904266u
30
+ 0.0208537u
29
+ ··· + 6.07142u 1.31372
a
1
=
0.0137586u
30
0.0382466u
29
+ ··· 5.78489u + 0.627589
0.00498751u
30
+ 0.0153717u
29
+ ··· 0.409851u + 0.438957
a
6
=
0.0215620u
30
0.0541526u
29
+ ··· 9.38954u + 3.42557
0.00904266u
30
+ 0.0208537u
29
+ ··· + 6.07142u 1.31372
a
10
=
0.00710160u
30
+ 0.0223768u
29
+ ··· + 3.65065u + 0.846020
0.0153838u
30
0.0339537u
29
+ ··· 10.1652u + 1.84167
a
2
=
0.00233531u
30
0.00869416u
29
+ ··· 2.45300u 0.381174
0.00433511u
30
0.0145092u
29
+ ··· 1.18936u + 0.450278
a
5
=
0.0154553u
30
0.0361401u
29
+ ··· 9.80384u + 3.74041
0.0228960u
30
+ 0.0534719u
29
+ ··· + 12.3145u 2.52457
a
11
=
0.0170559u
30
+ 0.0494259u
29
+ ··· + 8.44345u 0.917949
0.0254517u
30
0.0597883u
29
+ ··· 13.3489u + 2.51042
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0281078u
30
0.0792191u
29
+ ··· 6.22632u 13.3726
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
31
+ 59u
30
+ ··· 484409u + 120409
c
2
, c
5
u
31
+ 3u
30
+ ··· + 599u + 347
c
3
, c
7
u
31
u
30
+ ··· 221u + 527
c
4
, c
10
u
31
u
30
+ ··· + 5u + 13
c
6
, c
9
u
31
+ 2u
30
+ ··· + 75u
2
1
c
8
u
31
2u
30
+ ··· 374u 53
c
11
u
31
+ 29u
30
+ ··· + 2911u + 169
c
12
u
31
+ 2u
30
+ ··· 185350u 50425
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
31
183y
30
+ ··· + 2147685948663y 14498327281
c
2
, c
5
y
31
59y
30
+ ··· 484409y 120409
c
3
, c
7
y
31
57y
30
+ ··· + 1881747y 277729
c
4
, c
10
y
31
29y
30
+ ··· + 2911y 169
c
6
, c
9
y
31
+ 34y
30
+ ··· + 150y 1
c
8
y
31
10y
30
+ ··· + 84014y 2809
c
11
y
31
41y
30
+ ··· + 4210051y 28561
c
12
y
31
78y
30
+ ··· + 44563768850y 2542680625
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.703721 + 0.744561I
a = 0.131219 0.230843I
b = 0.150516 + 0.640112I
0.71734 2.07224I 3.68384 + 1.56459I
u = 0.703721 0.744561I
a = 0.131219 + 0.230843I
b = 0.150516 0.640112I
0.71734 + 2.07224I 3.68384 1.56459I
u = 0.695433 + 0.780531I
a = 0.508339 0.670000I
b = 0.329548 + 0.630508I
3.81425 + 5.79719I 8.30177 4.14014I
u = 0.695433 0.780531I
a = 0.508339 + 0.670000I
b = 0.329548 0.630508I
3.81425 5.79719I 8.30177 + 4.14014I
u = 0.884098 + 0.327223I
a = 2.72119 0.44116I
b = 0.58571 + 1.64877I
9.20202 + 4.10011I 18.4887 4.6238I
u = 0.884098 0.327223I
a = 2.72119 + 0.44116I
b = 0.58571 1.64877I
9.20202 4.10011I 18.4887 + 4.6238I
u = 1.13855
a = 1.34619
b = 0.551542
5.55158 15.9810
u = 0.228324 + 0.824059I
a = 0.020823 0.480166I
b = 0.201885 + 0.199719I
1.16898 1.90810I 3.82691 + 6.03216I
u = 0.228324 0.824059I
a = 0.020823 + 0.480166I
b = 0.201885 0.199719I
1.16898 + 1.90810I 3.82691 6.03216I
u = 1.14547
a = 1.67126
b = 0.294014
10.8570 1.07250
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.052704 + 0.830178I
a = 0.688824 + 1.106930I
b = 1.032010 + 0.511602I
0.254185 + 0.523436I 8.37978 3.05773I
u = 0.052704 0.830178I
a = 0.688824 1.106930I
b = 1.032010 0.511602I
0.254185 0.523436I 8.37978 + 3.05773I
u = 0.821890
a = 3.31155
b = 0.588551
15.0143 24.8400
u = 1.093710 + 0.585354I
a = 0.529184 0.132666I
b = 0.021101 + 0.605842I
5.53724 1.04949I 12.01248 + 0.06352I
u = 1.093710 0.585354I
a = 0.529184 + 0.132666I
b = 0.021101 0.605842I
5.53724 + 1.04949I 12.01248 0.06352I
u = 1.296560 + 0.420401I
a = 1.209060 0.052495I
b = 0.37149 + 1.70399I
4.79226 2.17270I 10.74429 + 3.28820I
u = 1.296560 0.420401I
a = 1.209060 + 0.052495I
b = 0.37149 1.70399I
4.79226 + 2.17270I 10.74429 3.28820I
u = 0.525205 + 1.267060I
a = 0.621188 + 0.802341I
b = 0.75793 + 1.60948I
1.26769 5.50031I 6.94404 + 6.71659I
u = 0.525205 1.267060I
a = 0.621188 0.802341I
b = 0.75793 1.60948I
1.26769 + 5.50031I 6.94404 6.71659I
u = 0.526743 + 0.289192I
a = 0.458089 0.578413I
b = 0.03750 1.47275I
2.32560 + 0.63901I 14.5403 + 2.2459I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.526743 0.289192I
a = 0.458089 + 0.578413I
b = 0.03750 + 1.47275I
2.32560 0.63901I 14.5403 2.2459I
u = 1.61851
a = 1.15913
b = 0.0859312
18.4664 13.9210
u = 1.63750 + 0.39106I
a = 0.729477 + 0.317725I
b = 0.06541 + 1.72456I
12.19770 0.58193I 13.84300 + 0.10785I
u = 1.63750 0.39106I
a = 0.729477 0.317725I
b = 0.06541 1.72456I
12.19770 + 0.58193I 13.84300 0.10785I
u = 0.196127
a = 1.56428
b = 0.421923
0.703748 14.3840
u = 1.36626 + 1.27176I
a = 0.916122 0.700221I
b = 0.39264 2.22764I
15.5087 + 12.5998I 12.34182 4.74713I
u = 1.36626 1.27176I
a = 0.916122 + 0.700221I
b = 0.39264 + 2.22764I
15.5087 12.5998I 12.34182 + 4.74713I
u = 1.23394 + 1.55331I
a = 0.498680 0.733814I
b = 0.09233 2.40682I
16.2047 2.4749I 8.00000 + 0.I
u = 1.23394 1.55331I
a = 0.498680 + 0.733814I
b = 0.09233 + 2.40682I
16.2047 + 2.4749I 8.00000 + 0.I
u = 1.36828 + 1.45922I
a = 0.696632 0.707290I
b = 0.22656 2.42636I
19.0095 5.2807I 8.00000 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.36828 1.45922I
a = 0.696632 + 0.707290I
b = 0.22656 + 2.42636I
19.0095 + 5.2807I 8.00000 + 0.I
8
II.
I
u
2
= h2.29 × 10
12
u
21
1.33 × 10
13
u
20
+ · · · + 1.30 × 10
13
b + 2.85 × 10
13
, 1.45 ×
10
14
u
21
4.82×10
14
u
20
+· · ·+9.13×10
13
a2.37×10
13
, u
22
3u
21
+· · ·u1i
(i) Arc colorings
a
9
=
1
0
a
12
=
0
u
a
3
=
1.58571u
21
+ 5.28477u
20
+ ··· + 8.79506u + 0.259531
0.175518u
21
+ 1.02353u
20
+ ··· 0.370583u 2.18536
a
8
=
1
u
2
a
4
=
1.68041u
21
+ 5.28816u
20
+ ··· + 10.2237u + 1.91725
0.144177u
21
+ 0.875198u
20
+ ··· + 0.00484553u 1.90463
a
7
=
0.897790u
21
+ 2.29354u
20
+ ··· + 6.23833u + 4.35533
0.179274u
21
0.310068u
20
+ ··· + 0.773322u + 0.158689
a
1
=
0.481602u
21
2.58266u
20
+ ··· 12.9500u + 8.90752
0.841311u
21
+ 2.70321u
20
+ ··· + 1.56148u + 1.61463
a
6
=
1.07706u
21
+ 2.60361u
20
+ ··· + 5.46501u + 4.19664
0.179274u
21
0.310068u
20
+ ··· + 0.773322u + 0.158689
a
10
=
2.71177u
21
8.48610u
20
+ ··· 15.1040u 1.10776
1.09714u
21
+ 2.80089u
20
+ ··· + 2.25750u + 1.05460
a
2
=
4.45944u
21
+ 13.6659u
20
+ ··· + 16.9373u + 6.28405
1.17552u
21
+ 4.02353u
20
+ ··· + 7.62942u 1.18536
a
5
=
5.31330u
21
16.8601u
20
+ ··· 26.6004u 4.64301
1.65088u
21
5.79168u
20
+ ··· 8.47517u + 4.32508
a
11
=
6.16288u
21
19.4046u
20
+ ··· 29.4931u 3.47305
0.447926u
21
+ 0.664587u
20
+ ··· 3.13848u + 1.76637
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
358582400273224
91253214085243
u
21
1126227269963647
91253214085243
u
20
+ ···
215672464858020
91253214085243
u
410928767453229
91253214085243
9
(iv) u-Polynomials at the component
10
Crossings u-Polynomials at each crossing
c
1
u
22
18u
21
+ ··· 10u + 1
c
2
u
22
+ 2u
21
+ ··· 2u 1
c
3
u
22
10u
20
+ ··· + 4u 1
c
4
u
22
8u
20
+ ··· + 2u + 1
c
5
u
22
2u
21
+ ··· + 2u 1
c
6
u
22
+ 3u
21
+ ··· u + 1
c
7
u
22
10u
20
+ ··· 4u 1
c
8
u
22
3u
21
+ ··· u 1
c
9
u
22
3u
21
+ ··· + u + 1
c
10
u
22
8u
20
+ ··· 2u + 1
c
11
u
22
+ 16u
21
+ ··· + 6u + 1
c
12
u
22
u
21
+ ··· + 265u 325
11
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
38y
21
+ ··· + 22y + 1
c
2
, c
5
y
22
18y
21
+ ··· 10y + 1
c
3
, c
7
y
22
20y
21
+ ··· 22y + 1
c
4
, c
10
y
22
16y
21
+ ··· 6y + 1
c
6
, c
9
y
22
+ 7y
21
+ ··· + 11y + 1
c
8
y
22
+ 3y
21
+ ··· + 15y + 1
c
11
y
22
8y
21
+ ··· + 18y + 1
c
12
y
22
13y
21
+ ··· + 178075y + 105625
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.675462 + 0.838319I
a = 0.008572 + 0.690284I
b = 0.049974 0.146584I
4.45633 + 6.34458I 15.5915 9.5884I
u = 0.675462 0.838319I
a = 0.008572 0.690284I
b = 0.049974 + 0.146584I
4.45633 6.34458I 15.5915 + 9.5884I
u = 0.633475 + 0.887297I
a = 0.292441 + 0.485808I
b = 0.017991 + 0.544505I
1.45417 2.44146I 12.83139 + 5.34000I
u = 0.633475 0.887297I
a = 0.292441 0.485808I
b = 0.017991 0.544505I
1.45417 + 2.44146I 12.83139 5.34000I
u = 0.042940 + 1.104590I
a = 0.39566 + 1.44174I
b = 1.03092 + 1.63134I
1.065930 0.329159I 13.19387 + 1.39425I
u = 0.042940 1.104590I
a = 0.39566 1.44174I
b = 1.03092 1.63134I
1.065930 + 0.329159I 13.19387 1.39425I
u = 0.252383 + 1.147210I
a = 0.301449 0.369158I
b = 1.053220 0.343716I
3.17115 2.28573I 13.14996 + 1.17177I
u = 0.252383 1.147210I
a = 0.301449 + 0.369158I
b = 1.053220 + 0.343716I
3.17115 + 2.28573I 13.14996 1.17177I
u = 1.188140 + 0.190133I
a = 1.38990 0.30485I
b = 0.372214 + 1.249320I
6.70637 + 3.83944I 14.0398 3.8960I
u = 1.188140 0.190133I
a = 1.38990 + 0.30485I
b = 0.372214 1.249320I
6.70637 3.83944I 14.0398 + 3.8960I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.24876
a = 1.55789
b = 0.564169
11.2120 24.0840
u = 0.724135 + 1.064440I
a = 0.151217 0.018235I
b = 0.878909 + 0.636056I
1.25661 2.81754I 11.73737 + 2.98648I
u = 0.724135 1.064440I
a = 0.151217 + 0.018235I
b = 0.878909 0.636056I
1.25661 + 2.81754I 11.73737 2.98648I
u = 0.611081
a = 3.95557
b = 0.264471
14.5437 7.25840
u = 0.56540 + 1.38339I
a = 0.809415 + 0.937201I
b = 0.85679 + 2.47579I
2.03475 5.46840I 17.4047 + 5.9669I
u = 0.56540 1.38339I
a = 0.809415 0.937201I
b = 0.85679 2.47579I
2.03475 + 5.46840I 17.4047 5.9669I
u = 0.124853 + 0.474502I
a = 0.797687 0.440440I
b = 0.128382 1.329670I
2.74060 1.00097I 1.72317 + 7.63275I
u = 0.124853 0.474502I
a = 0.797687 + 0.440440I
b = 0.128382 + 1.329670I
2.74060 + 1.00097I 1.72317 7.63275I
u = 1.44364 + 0.52025I
a = 1.170920 + 0.077131I
b = 0.77946 + 1.66077I
5.74006 1.77370I 18.0387 + 1.9713I
u = 1.44364 0.52025I
a = 1.170920 0.077131I
b = 0.77946 1.66077I
5.74006 + 1.77370I 18.0387 1.9713I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.151420 + 0.403445I
a = 3.34960 + 3.75605I
b = 0.53770 + 1.48620I
8.39060 + 3.39579I 12.11834 0.09038I
u = 0.151420 0.403445I
a = 3.34960 3.75605I
b = 0.53770 1.48620I
8.39060 3.39579I 12.11834 + 0.09038I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
22
18u
21
+ ··· 10u + 1)(u
31
+ 59u
30
+ ··· 484409u + 120409)
c
2
(u
22
+ 2u
21
+ ··· 2u 1)(u
31
+ 3u
30
+ ··· + 599u + 347)
c
3
(u
22
10u
20
+ ··· + 4u 1)(u
31
u
30
+ ··· 221u + 527)
c
4
(u
22
8u
20
+ ··· + 2u + 1)(u
31
u
30
+ ··· + 5u + 13)
c
5
(u
22
2u
21
+ ··· + 2u 1)(u
31
+ 3u
30
+ ··· + 599u + 347)
c
6
(u
22
+ 3u
21
+ ··· u + 1)(u
31
+ 2u
30
+ ··· + 75u
2
1)
c
7
(u
22
10u
20
+ ··· 4u 1)(u
31
u
30
+ ··· 221u + 527)
c
8
(u
22
3u
21
+ ··· u 1)(u
31
2u
30
+ ··· 374u 53)
c
9
(u
22
3u
21
+ ··· + u + 1)(u
31
+ 2u
30
+ ··· + 75u
2
1)
c
10
(u
22
8u
20
+ ··· 2u + 1)(u
31
u
30
+ ··· + 5u + 13)
c
11
(u
22
+ 16u
21
+ ··· + 6u + 1)(u
31
+ 29u
30
+ ··· + 2911u + 169)
c
12
(u
22
u
21
+ ··· + 265u 325)(u
31
+ 2u
30
+ ··· 185350u 50425)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
22
38y
21
+ ··· + 22y + 1)
· (y
31
183y
30
+ ··· + 2147685948663y 14498327281)
c
2
, c
5
(y
22
18y
21
+ ··· 10y + 1)(y
31
59y
30
+ ··· 484409y 120409)
c
3
, c
7
(y
22
20y
21
+ ··· 22y + 1)
· (y
31
57y
30
+ ··· + 1881747y 277729)
c
4
, c
10
(y
22
16y
21
+ ··· 6y + 1)(y
31
29y
30
+ ··· + 2911y 169)
c
6
, c
9
(y
22
+ 7y
21
+ ··· + 11y + 1)(y
31
+ 34y
30
+ ··· + 150y 1)
c
8
(y
22
+ 3y
21
+ ··· + 15y + 1)(y
31
10y
30
+ ··· + 84014y 2809)
c
11
(y
22
8y
21
+ ··· + 18y + 1)(y
31
41y
30
+ ··· + 4210051y 28561)
c
12
(y
22
13y
21
+ ··· + 178075y + 105625)
· (y
31
78y
30
+ ··· + 44563768850y 2542680625)
18