12n
0419
(K12n
0419
)
A knot diagram
1
Linearized knot diagam
3 6 12 9 2 10 3 11 6 4 8 7
Solving Sequence
6,9
10
3,7
2 1 5 4 11 8 12
c
9
c
6
c
2
c
1
c
5
c
4
c
10
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.66310 × 10
40
u
18
+ 2.05150 × 10
40
u
17
+ ··· + 1.58940 × 10
42
b + 1.51319 × 10
42
,
1.49523 × 10
41
u
18
1.67879 × 10
41
u
17
+ ··· + 2.70197 × 10
43
a + 4.39022 × 10
43
,
u
19
+ 2u
18
+ ··· + 197u + 34i
I
u
2
= h−6u
11
+ 17u
10
+ 15u
9
46u
8
27u
7
+ 16u
6
+ 67u
5
+ 36u
4
81u
3
12u
2
+ 3b + 33u 13,
u
11
+ 8u
9
+ 6u
8
20u
7
23u
6
+ 6u
5
+ 33u
4
+ 24u
3
24u
2
+ 3a 13u + 12,
u
12
3u
11
2u
10
+ 8u
9
+ 3u
8
3u
7
10u
6
4u
5
+ 14u
4
2u
3
6u
2
+ 4u 1i
I
u
3
= h−u
3
b + u
3
+ b
2
+ u
2
u 1, u
3
+ a u, u
4
u
2
+ 1i
I
u
4
= hb + u 1, a u + 1, u
2
u + 1i
* 4 irreducible components of dim
C
= 0, with total 41 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.66 × 10
40
u
18
+ 2.05 × 10
40
u
17
+ · · · + 1.59 × 10
42
b + 1.51 ×
10
42
, 1.50 × 10
41
u
18
1.68 × 10
41
u
17
+ · · · + 2.70 × 10
43
a + 4.39 ×
10
43
, u
19
+ 2u
18
+ · · · + 197u + 34i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
0.00553383u
18
+ 0.00621320u
17
+ ··· + 4.05205u 1.62482
0.0104638u
18
0.0129074u
17
+ ··· 4.49529u 0.952055
a
7
=
u
u
3
+ u
a
2
=
0.00553383u
18
+ 0.00621320u
17
+ ··· + 4.05205u 1.62482
0.0124793u
18
0.0173211u
17
+ ··· 5.26347u 1.11711
a
1
=
0.0156043u
18
0.0294312u
17
+ ··· 5.04992u 3.27835
0.00435103u
18
+ 0.00855543u
17
+ ··· 2.18420u 0.489130
a
5
=
0.0196881u
18
+ 0.0324028u
17
+ ··· + 5.22408u + 0.287287
0.0163849u
18
0.0268543u
17
+ ··· 3.04420u 0.799678
a
4
=
0.00330322u
18
+ 0.00554852u
17
+ ··· + 2.17988u 0.512391
0.0163849u
18
0.0268543u
17
+ ··· 3.04420u 0.799678
a
11
=
0.0271290u
18
+ 0.0462190u
17
+ ··· + 4.83481u + 2.57786
0.000739414u
18
+ 0.00488659u
17
+ ··· + 0.324280u + 0.739169
a
8
=
0.00330322u
18
0.00554852u
17
+ ··· 2.17988u + 0.512391
0.0151808u
18
+ 0.0269510u
17
+ ··· + 2.74012u + 0.653062
a
12
=
0.0134032u
18
0.0261459u
17
+ ··· 5.10567u 3.36811
0.00236078u
18
+ 0.00585106u
17
+ ··· 1.98324u 0.361402
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0105559u
18
+ 0.0127073u
17
+ ··· + 11.9187u 12.1302
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 97u
18
+ ··· 1941683u + 162409
c
2
, c
5
u
19
+ 3u
18
+ ··· 721u 403
c
3
u
19
5u
18
+ ··· 24u + 11
c
4
u
19
5u
18
+ ··· + 270503u + 65171
c
6
, c
9
u
19
+ 2u
18
+ ··· + 197u + 34
c
7
u
19
5u
18
+ ··· + 94u 421
c
8
, c
11
u
19
+ 4u
18
+ ··· + 111u + 9
c
10
u
19
+ u
18
+ ··· + 706u + 167
c
12
u
19
+ 4u
18
+ ··· 13967u 14044
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
3221y
18
+ ··· + 5217004770233y 26376683281
c
2
, c
5
y
19
97y
18
+ ··· 1941683y 162409
c
3
y
19
9y
18
+ ··· + 1588y 121
c
4
y
19
193y
18
+ ··· + 27615258537y 4247259241
c
6
, c
9
y
19
54y
18
+ ··· + 33165y 1156
c
7
y
19
55y
18
+ ··· + 783476y 177241
c
8
, c
11
y
19
+ 8y
18
+ ··· + 4023y 81
c
10
y
19
+ y
18
+ ··· + 293694y 27889
c
12
y
19
210y
18
+ ··· + 15988001y 197233936
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.461221 + 0.540098I
a = 0.329642 + 0.316078I
b = 0.029910 + 0.572548I
1.03982 + 1.81601I 6.18544 3.90826I
u = 0.461221 0.540098I
a = 0.329642 0.316078I
b = 0.029910 0.572548I
1.03982 1.81601I 6.18544 + 3.90826I
u = 1.088290 + 0.702970I
a = 0.517058 0.653979I
b = 1.259640 0.053971I
1.72336 + 1.68833I 7.61757 1.84714I
u = 1.088290 0.702970I
a = 0.517058 + 0.653979I
b = 1.259640 + 0.053971I
1.72336 1.68833I 7.61757 + 1.84714I
u = 1.36853 + 0.50280I
a = 0.383197 + 0.779759I
b = 1.84064 + 0.23118I
8.13748 4.76151I 14.1488 + 2.3927I
u = 1.36853 0.50280I
a = 0.383197 0.779759I
b = 1.84064 0.23118I
8.13748 + 4.76151I 14.1488 2.3927I
u = 0.347878 + 0.247156I
a = 2.26272 0.83175I
b = 0.56233 + 1.35367I
3.68506 + 0.25072I 15.1444 0.1476I
u = 0.347878 0.247156I
a = 2.26272 + 0.83175I
b = 0.56233 1.35367I
3.68506 0.25072I 15.1444 + 0.1476I
u = 0.310858 + 0.201294I
a = 0.06485 + 2.00660I
b = 2.14079 + 0.42046I
3.21447 + 6.05819I 7.22138 2.86734I
u = 0.310858 0.201294I
a = 0.06485 2.00660I
b = 2.14079 0.42046I
3.21447 6.05819I 7.22138 + 2.86734I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.21322 + 1.62429I
a = 0.704489 + 0.702997I
b = 2.62979 2.27449I
1.70124 + 2.03414I 9.92889 4.28864I
u = 0.21322 1.62429I
a = 0.704489 0.702997I
b = 2.62979 + 2.27449I
1.70124 2.03414I 9.92889 + 4.28864I
u = 0.230182
a = 1.93660
b = 0.473485
0.715844 14.1990
u = 2.32815
a = 1.06005
b = 3.36761
18.6560 21.4300
u = 2.39736 + 1.54309I
a = 1.141170 0.008691I
b = 1.78841 + 8.62679I
12.7776 + 11.8645I 10.68698 4.25583I
u = 2.39736 1.54309I
a = 1.141170 + 0.008691I
b = 1.78841 8.62679I
12.7776 11.8645I 10.68698 + 4.25583I
u = 2.64357 + 1.95100I
a = 1.147970 + 0.222590I
b = 3.90696 11.33980I
13.49670 + 2.32138I 10.59401 + 0.I
u = 2.64357 1.95100I
a = 1.147970 0.222590I
b = 3.90696 + 11.33980I
13.49670 2.32138I 10.59401 + 0.I
u = 5.99343
a = 1.27698
b = 43.7617
17.1155 0
6
II. I
u
2
=
h−6u
11
+ 17u
10
+ · · ·+3b13, u
11
+ 8u
9
+ · · ·+3a+12, u
12
3u
11
+ · · ·+4u1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
1
3
u
11
8
3
u
9
+ ··· +
13
3
u 4
2u
11
17
3
u
10
+ ··· 11u +
13
3
a
7
=
u
u
3
+ u
a
2
=
1
3
u
11
8
3
u
9
+ ··· +
13
3
u 4
u
11
3u
10
+ ···
22
3
u +
10
3
a
1
=
1
3
u
11
7
3
u
10
+ ··· 13u + 7
1
3
u
11
+
4
3
u
10
+ ··· +
22
3
u
1
3
a
5
=
2
3
u
11
+
1
3
u
10
+ ···
22
3
u + 6
1
3
u
11
1
3
u
10
+ ··· +
13
3
u
4
3
a
4
=
1
3
u
11
+
10
3
u
9
+ ··· 3u +
14
3
1
3
u
11
1
3
u
10
+ ··· +
13
3
u
4
3
a
11
=
8
3
u
11
+
22
3
u
10
+ ··· + 15u
7
3
4
3
u
11
+
11
3
u
10
+ ··· +
20
3
u
10
3
a
8
=
1
3
u
11
10
3
u
9
+ ··· + 3u
14
3
4
3
u
11
3u
10
+ ···
23
3
u + 2
a
12
=
2
3
u
11
+
1
3
u
10
+ ···
25
3
u + 6
1
3
u
10
u
9
+ ··· + 3u +
1
3
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
46
3
u
11
+33u
10
+62u
9
247
3
u
8
114u
7
91
3
u
6
+
388
3
u
5
+
526
3
u
4
304
3
u
3
176
3
u
2
+
181
3
u
107
3
7
(iv) u-Polynomials at the component
8
Crossings u-Polynomials at each crossing
c
1
u
12
10u
11
+ ··· + 2u + 1
c
2
u
12
+ 8u
11
+ ··· 4u 1
c
3
u
12
+ 3u
11
+ ··· 4u 1
c
4
u
12
3u
11
+ ··· 113u + 61
c
5
u
12
8u
11
+ ··· + 4u 1
c
6
u
12
+ 3u
11
+ ··· 4u 1
c
7
u
12
+ 3u
11
+ ··· 2u 1
c
8
u
12
+ 3u
11
+ ··· + 6u + 1
c
9
u
12
3u
11
+ ··· + 4u 1
c
10
u
12
+ u
11
+ u
10
u
9
2u
8
7u
7
3u
6
4u
5
+ 4u
4
u
3
+ 3u
2
+ 1
c
11
u
12
3u
11
+ ··· 6u + 1
c
12
u
12
7u
11
+ ··· 149u + 61
9
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
70y
11
+ ··· 18y + 1
c
2
, c
5
y
12
10y
11
+ ··· + 2y + 1
c
3
y
12
3y
11
+ ··· 6y + 1
c
4
y
12
11y
11
+ ··· + 2725y + 3721
c
6
, c
9
y
12
13y
11
+ ··· 4y + 1
c
7
y
12
19y
11
+ ··· 16y + 1
c
8
, c
11
y
12
+ 3y
11
+ ··· 20y + 1
c
10
y
12
+ y
11
+ ··· + 6y + 1
c
12
y
12
33y
11
+ ··· 22201y + 3721
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.059480 + 0.154142I
a = 0.819599 0.608253I
b = 0.415453 0.590193I
1.22664 + 3.11362I 7.04939 7.05690I
u = 1.059480 0.154142I
a = 0.819599 + 0.608253I
b = 0.415453 + 0.590193I
1.22664 3.11362I 7.04939 + 7.05690I
u = 0.457840 + 1.081060I
a = 0.907598 0.603898I
b = 3.07960 0.50765I
2.31672 + 1.60638I 1.16262 0.94623I
u = 0.457840 1.081060I
a = 0.907598 + 0.603898I
b = 3.07960 + 0.50765I
2.31672 1.60638I 1.16262 + 0.94623I
u = 1.24242
a = 0.422158
b = 0.0575173
3.40775 11.1910
u = 0.646031 + 0.179003I
a = 0.948613 0.380726I
b = 2.25048 + 0.18881I
3.62882 6.45766I 17.3073 + 12.6531I
u = 0.646031 0.179003I
a = 0.948613 + 0.380726I
b = 2.25048 0.18881I
3.62882 + 6.45766I 17.3073 12.6531I
u = 1.45298 + 0.05285I
a = 0.107356 0.338014I
b = 0.694805 0.843286I
7.20322 5.60855I 9.98455 + 5.57082I
u = 1.45298 0.05285I
a = 0.107356 + 0.338014I
b = 0.694805 + 0.843286I
7.20322 + 5.60855I 9.98455 5.57082I
u = 0.285356 + 0.363826I
a = 1.91901 + 3.12576I
b = 0.84108 1.29227I
8.23832 3.21911I 14.7748 0.6369I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.285356 0.363826I
a = 1.91901 3.12576I
b = 0.84108 + 1.29227I
8.23832 + 3.21911I 14.7748 + 0.6369I
u = 2.50831
a = 1.08227
b = 4.49661
18.1761 4.25130
13
III. I
u
3
= h−u
3
b + u
3
+ b
2
+ u
2
u 1, u
3
+ a u, u
4
u
2
+ 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
u
3
+ u
b
a
7
=
u
u
3
+ u
a
2
=
u
3
+ u
b u
a
1
=
0
u
a
5
=
u
3
+ u
b
a
4
=
u
3
+ b + u
b
a
11
=
u
3
b u
3
u
2
u
3
a
8
=
u
3
b u
1
a
12
=
u
3
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
16
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
8
c
3
u
8
+ 4u
7
+ 8u
6
+ 10u
5
+ 9u
4
+ 6u
3
2u + 1
c
4
u
8
+ 2u
5
+ u
4
+ 6u
3
+ 4u
2
2u + 1
c
5
(u + 1)
8
c
6
, c
9
(u
4
u
2
+ 1)
2
c
7
u
8
+ 2u
7
u
6
4u
5
+ 6u
3
+ 3u
2
4u + 1
c
8
, c
11
(u
2
+ 1)
4
c
10
u
8
+ 3u
6
2u
5
+ 4u
4
+ 7u
2
+ 2u + 1
c
12
(u
2
+ u + 1)
4
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
8
c
3
y
8
+ 2y
6
4y
5
21y
4
+ 20y
3
+ 42y
2
4y + 1
c
4
y
8
+ 2y
6
+ 4y
5
21y
4
20y
3
+ 42y
2
+ 4y + 1
c
6
, c
9
(y
2
y + 1)
4
c
7
y
8
6y
7
+ 17y
6
34y
5
+ 60y
4
70y
3
+ 57y
2
10y + 1
c
8
, c
11
(y + 1)
8
c
10
y
8
+ 6y
7
+ 17y
6
+ 34y
5
+ 60y
4
+ 70y
3
+ 57y
2
+ 10y + 1
c
12
(y
2
+ y + 1)
4
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.866025 0.500000I
b = 1.200000 0.069179I
3.28987 2.02988I 14.0000 + 3.4641I
u = 0.866025 + 0.500000I
a = 0.866025 0.500000I
b = 1.20000 + 1.06918I
3.28987 2.02988I 14.0000 + 3.4641I
u = 0.866025 0.500000I
a = 0.866025 + 0.500000I
b = 1.200000 + 0.069179I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.866025 0.500000I
a = 0.866025 + 0.500000I
b = 1.20000 1.06918I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.866025 + 0.500000I
a = 0.866025 0.500000I
b = 0.224207 + 1.316270I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.866025 + 0.500000I
a = 0.866025 0.500000I
b = 0.224207 0.316268I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.866025 0.500000I
a = 0.866025 + 0.500000I
b = 0.224207 1.316270I
3.28987 2.02988I 14.0000 + 3.4641I
u = 0.866025 0.500000I
a = 0.866025 + 0.500000I
b = 0.224207 + 0.316268I
3.28987 2.02988I 14.0000 + 3.4641I
17
IV. I
u
4
= hb + u 1, a u + 1, u
2
u + 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u 1
a
3
=
u 1
u + 1
a
7
=
u
u + 1
a
2
=
u 1
1
a
1
=
0
u
a
5
=
u + 1
u 1
a
4
=
0
u 1
a
11
=
1
1
a
8
=
0
1
a
12
=
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 4
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u + 1)
2
c
2
, c
5
, c
8
c
11
(u 1)
2
c
3
, c
4
, c
10
u
2
+ u + 1
c
6
, c
7
, c
9
c
12
u
2
u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
8
, c
11
(y 1)
2
c
3
, c
4
, c
6
c
7
, c
9
, c
10
c
12
y
2
+ y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
1.64493 + 2.02988I 6.00000 3.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
1.64493 2.02988I 6.00000 + 3.46410I
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
8
)(u + 1)
2
(u
12
10u
11
+ ··· + 2u + 1)
· (u
19
+ 97u
18
+ ··· 1941683u + 162409)
c
2
((u 1)
10
)(u
12
+ 8u
11
+ ··· 4u 1)(u
19
+ 3u
18
+ ··· 721u 403)
c
3
(u
2
+ u + 1)(u
8
+ 4u
7
+ 8u
6
+ 10u
5
+ 9u
4
+ 6u
3
2u + 1)
· (u
12
+ 3u
11
+ ··· 4u 1)(u
19
5u
18
+ ··· 24u + 11)
c
4
(u
2
+ u + 1)(u
8
+ 2u
5
+ u
4
+ 6u
3
+ 4u
2
2u + 1)
· (u
12
3u
11
+ ··· 113u + 61)(u
19
5u
18
+ ··· + 270503u + 65171)
c
5
((u 1)
2
)(u + 1)
8
(u
12
8u
11
+ ··· + 4u 1)
· (u
19
+ 3u
18
+ ··· 721u 403)
c
6
(u
2
u + 1)(u
4
u
2
+ 1)
2
(u
12
+ 3u
11
+ ··· 4u 1)
· (u
19
+ 2u
18
+ ··· + 197u + 34)
c
7
(u
2
u + 1)(u
8
+ 2u
7
u
6
4u
5
+ 6u
3
+ 3u
2
4u + 1)
· (u
12
+ 3u
11
+ ··· 2u 1)(u
19
5u
18
+ ··· + 94u 421)
c
8
((u 1)
2
)(u
2
+ 1)
4
(u
12
+ 3u
11
+ ··· + 6u + 1)
· (u
19
+ 4u
18
+ ··· + 111u + 9)
c
9
(u
2
u + 1)(u
4
u
2
+ 1)
2
(u
12
3u
11
+ ··· + 4u 1)
· (u
19
+ 2u
18
+ ··· + 197u + 34)
c
10
(u
2
+ u + 1)(u
8
+ 3u
6
2u
5
+ 4u
4
+ 7u
2
+ 2u + 1)
· (u
12
+ u
11
+ u
10
u
9
2u
8
7u
7
3u
6
4u
5
+ 4u
4
u
3
+ 3u
2
+ 1)
· (u
19
+ u
18
+ ··· + 706u + 167)
c
11
((u 1)
2
)(u
2
+ 1)
4
(u
12
3u
11
+ ··· 6u + 1)
· (u
19
+ 4u
18
+ ··· + 111u + 9)
c
12
(u
2
u + 1)(u
2
+ u + 1)
4
(u
12
7u
11
+ ··· 149u + 61)
· (u
19
+ 4u
18
+ ··· 13967u 14044)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
12
70y
11
+ ··· 18y + 1)
· (y
19
3221y
18
+ ··· + 5217004770233y 26376683281)
c
2
, c
5
((y 1)
10
)(y
12
10y
11
+ ··· + 2y + 1)
· (y
19
97y
18
+ ··· 1941683y 162409)
c
3
(y
2
+ y + 1)(y
8
+ 2y
6
4y
5
21y
4
+ 20y
3
+ 42y
2
4y + 1)
· (y
12
3y
11
+ ··· 6y + 1)(y
19
9y
18
+ ··· + 1588y 121)
c
4
(y
2
+ y + 1)(y
8
+ 2y
6
+ 4y
5
21y
4
20y
3
+ 42y
2
+ 4y + 1)
· (y
12
11y
11
+ ··· + 2725y + 3721)
· (y
19
193y
18
+ ··· + 27615258537y 4247259241)
c
6
, c
9
((y
2
y + 1)
4
)(y
2
+ y + 1)(y
12
13y
11
+ ··· 4y + 1)
· (y
19
54y
18
+ ··· + 33165y 1156)
c
7
(y
2
+ y + 1)(y
8
6y
7
+ ··· 10y + 1)
· (y
12
19y
11
+ ··· 16y + 1)(y
19
55y
18
+ ··· + 783476y 177241)
c
8
, c
11
((y 1)
2
)(y + 1)
8
(y
12
+ 3y
11
+ ··· 20y + 1)
· (y
19
+ 8y
18
+ ··· + 4023y 81)
c
10
(y
2
+ y + 1)(y
8
+ 6y
7
+ ··· + 10y + 1)
· (y
12
+ y
11
+ ··· + 6y + 1)(y
19
+ y
18
+ ··· + 293694y 27889)
c
12
((y
2
+ y + 1)
5
)(y
12
33y
11
+ ··· 22201y + 3721)
· (y
19
210y
18
+ ··· + 15988001y 197233936)
23