11a
1
(K11a
1
)
A knot diagram
1
Linearized knot diagam
5 1 8 2 3 10 4 6 11 7 9
Solving Sequence
7,11
10
3,6
5 9 1 2 8 4
c
10
c
6
c
5
c
9
c
11
c
2
c
8
c
3
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h4u
68
+ 5u
67
+ ··· + 2b + 3u, 4u
68
+ 8u
67
+ ··· + a + 2, u
69
+ 3u
68
+ ··· + 2u + 1i
I
u
2
= h−u
2
b + b
2
+ bu u + 1, a, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4u
68
+5u
67
+· · ·+2b+3u, 4u
68
+8u
67
+· · ·+a+2, u
69
+3u
68
+· · ·+2u+1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
4u
68
8u
67
+ ··· 6u 2
2u
68
5
2
u
67
+ ···
3
2
u
3
3
2
u
a
6
=
u
u
3
+ u
a
5
=
u
18
3u
16
+ ··· + 4u + 1
1
2
u
67
u
66
+ ··· 3u
2
+
1
2
u
a
9
=
u
2
+ 1
u
2
a
1
=
u
4
u
2
+ 1
u
4
a
2
=
3
2
u
68
3u
67
+ ··· 3u
1
2
3
2
u
68
5u
67
+ ··· 3u 3
a
8
=
u
6
+ u
4
2u
2
+ 1
u
8
2u
6
+ 2u
4
2u
2
a
4
=
u
66
+ u
65
+ ··· + 12u
3
2u
u
68
11
2
u
67
+ ···
7
2
u 4
a
4
=
u
66
+ u
65
+ ··· + 12u
3
2u
u
68
11
2
u
67
+ ···
7
2
u 4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15
2
u
68
16u
67
+ ··· 12u
17
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
69
+ 4u
68
+ ··· 3u 1
c
2
u
69
+ 34u
68
+ ··· 3u 1
c
3
, c
7
u
69
u
68
+ ··· + 224u + 64
c
5
u
69
4u
68
+ ··· + 5265u 1153
c
6
, c
10
u
69
+ 3u
68
+ ··· + 2u + 1
c
8
u
69
3u
68
+ ··· 7540u + 937
c
9
, c
11
u
69
+ 23u
68
+ ··· 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
69
+ 34y
68
+ ··· 3y 1
c
2
y
69
+ 6y
68
+ ··· + 29y 1
c
3
, c
7
y
69
+ 35y
68
+ ··· 44032y 4096
c
5
y
69
22y
68
+ ··· + 5956197y 1329409
c
6
, c
10
y
69
23y
68
+ ··· 4y 1
c
8
y
69
11y
68
+ ··· + 10500084y 877969
c
9
, c
11
y
69
+ 49y
68
+ ··· 4y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.620084 + 0.792709I
a = 0.74143 1.28998I
b = 0.57525 1.64676I
3.30752 1.68121I 0
u = 0.620084 0.792709I
a = 0.74143 + 1.28998I
b = 0.57525 + 1.64676I
3.30752 + 1.68121I 0
u = 0.684134 + 0.748318I
a = 0.36010 + 2.15851I
b = 2.88057 + 0.64719I
1.42174 + 3.69530I 0
u = 0.684134 0.748318I
a = 0.36010 2.15851I
b = 2.88057 0.64719I
1.42174 3.69530I 0
u = 1.018820 + 0.054091I
a = 2.12560 + 0.70969I
b = 1.080890 + 0.121563I
4.13213 + 3.64791I 10.05983 + 0.I
u = 1.018820 0.054091I
a = 2.12560 0.70969I
b = 1.080890 0.121563I
4.13213 3.64791I 10.05983 + 0.I
u = 0.757016 + 0.607386I
a = 0.61533 + 1.53607I
b = 1.55783 + 1.59883I
0.06717 3.13357I 4.80388 + 4.92855I
u = 0.757016 0.607386I
a = 0.61533 1.53607I
b = 1.55783 1.59883I
0.06717 + 3.13357I 4.80388 4.92855I
u = 0.753436 + 0.711663I
a = 0.189133 0.672774I
b = 0.509996 0.067709I
2.48833 + 3.11204I 0
u = 0.753436 0.711663I
a = 0.189133 + 0.672774I
b = 0.509996 + 0.067709I
2.48833 3.11204I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.721710 + 0.747525I
a = 0.163681 + 0.945744I
b = 0.148711 0.025106I
3.30960 2.06237I 0
u = 0.721710 0.747525I
a = 0.163681 0.945744I
b = 0.148711 + 0.025106I
3.30960 + 2.06237I 0
u = 0.957145 + 0.038173I
a = 0.164596 + 0.280788I
b = 0.40893 + 1.40875I
2.00723 2.55767I 10.61202 + 4.63475I
u = 0.957145 0.038173I
a = 0.164596 0.280788I
b = 0.40893 1.40875I
2.00723 + 2.55767I 10.61202 4.63475I
u = 0.739249 + 0.744320I
a = 0.36989 1.54589I
b = 2.02675 0.23487I
3.53880 0.84616I 0
u = 0.739249 0.744320I
a = 0.36989 + 1.54589I
b = 2.02675 + 0.23487I
3.53880 + 0.84616I 0
u = 0.669660 + 0.814511I
a = 0.21586 + 1.69058I
b = 1.55340 + 0.94507I
1.48274 4.64133I 0
u = 0.669660 0.814511I
a = 0.21586 1.69058I
b = 1.55340 0.94507I
1.48274 + 4.64133I 0
u = 0.663443 + 0.838478I
a = 0.32742 2.04165I
b = 2.14814 1.38487I
0.95244 9.80543I 0
u = 0.663443 0.838478I
a = 0.32742 + 2.04165I
b = 2.14814 + 1.38487I
0.95244 + 9.80543I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.069640 + 0.121587I
a = 1.383900 + 0.064655I
b = 1.011640 + 0.155727I
4.92005 4.43213I 0
u = 1.069640 0.121587I
a = 1.383900 0.064655I
b = 1.011640 0.155727I
4.92005 + 4.43213I 0
u = 0.910624
a = 1.15059
b = 0.724599
1.54956 5.79310
u = 1.096170 + 0.077778I
a = 1.187760 + 0.693218I
b = 0.508671 0.071320I
9.42165 0.97729I 0
u = 1.096170 0.077778I
a = 1.187760 0.693218I
b = 0.508671 + 0.071320I
9.42165 + 0.97729I 0
u = 1.096180 + 0.140788I
a = 1.90353 0.09913I
b = 1.124720 + 0.210315I
7.64943 9.45868I 0
u = 1.096180 0.140788I
a = 1.90353 + 0.09913I
b = 1.124720 0.210315I
7.64943 + 9.45868I 0
u = 0.970729 + 0.528704I
a = 0.639720 0.025923I
b = 0.97663 1.40719I
2.57806 + 1.76748I 0
u = 0.970729 0.528704I
a = 0.639720 + 0.025923I
b = 0.97663 + 1.40719I
2.57806 1.76748I 0
u = 1.012390 + 0.483692I
a = 1.203180 + 0.248675I
b = 0.94688 + 2.11622I
5.59193 2.78605I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.012390 0.483692I
a = 1.203180 0.248675I
b = 0.94688 2.11622I
5.59193 + 2.78605I 0
u = 0.817402 + 0.784634I
a = 0.522773 0.578493I
b = 0.589673 + 0.434002I
4.09856 2.01146I 0
u = 0.817402 0.784634I
a = 0.522773 + 0.578493I
b = 0.589673 0.434002I
4.09856 + 2.01146I 0
u = 0.835392 + 0.165049I
a = 0.471504 0.753519I
b = 0.448734 0.560979I
1.57618 + 0.35138I 8.53058 0.76832I
u = 0.835392 0.165049I
a = 0.471504 + 0.753519I
b = 0.448734 + 0.560979I
1.57618 0.35138I 8.53058 + 0.76832I
u = 0.958278 + 0.638119I
a = 1.79930 0.63520I
b = 0.60710 3.04859I
0.73989 1.80119I 0
u = 0.958278 0.638119I
a = 1.79930 + 0.63520I
b = 0.60710 + 3.04859I
0.73989 + 1.80119I 0
u = 1.021490 + 0.565890I
a = 0.705105 0.650077I
b = 1.78899 + 1.10656I
6.45549 + 5.60193I 0
u = 1.021490 0.565890I
a = 0.705105 + 0.650077I
b = 1.78899 1.10656I
6.45549 5.60193I 0
u = 0.954179 + 0.682947I
a = 0.475159 0.057085I
b = 0.520320 0.735924I
1.87091 + 2.24800I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.954179 0.682947I
a = 0.475159 + 0.057085I
b = 0.520320 + 0.735924I
1.87091 2.24800I 0
u = 0.851035 + 0.816929I
a = 0.494489 + 0.078024I
b = 0.423380 0.437237I
2.44272 6.15643I 0
u = 0.851035 0.816929I
a = 0.494489 0.078024I
b = 0.423380 + 0.437237I
2.44272 + 6.15643I 0
u = 0.965906 + 0.700019I
a = 1.50890 0.31337I
b = 2.06844 + 1.83162I
2.84817 4.66103I 0
u = 0.965906 0.700019I
a = 1.50890 + 0.31337I
b = 2.06844 1.83162I
2.84817 + 4.66103I 0
u = 0.929274 + 0.754481I
a = 0.504463 0.456421I
b = 1.276140 0.176378I
3.75509 3.78687I 0
u = 0.929274 0.754481I
a = 0.504463 + 0.456421I
b = 1.276140 + 0.176378I
3.75509 + 3.78687I 0
u = 0.977343 + 0.698293I
a = 0.773277 + 0.042094I
b = 1.143270 + 0.001207I
2.53315 + 7.57441I 0
u = 0.977343 0.698293I
a = 0.773277 0.042094I
b = 1.143270 0.001207I
2.53315 7.57441I 0
u = 0.996040 + 0.691361I
a = 2.09972 + 0.48052I
b = 2.83797 2.81894I
0.48440 9.18841I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.996040 0.691361I
a = 2.09972 0.48052I
b = 2.83797 + 2.81894I
0.48440 + 9.18841I 0
u = 0.915358 + 0.795783I
a = 0.055765 + 0.369318I
b = 0.341328 + 1.097470I
2.24452 + 0.13399I 0
u = 0.915358 0.795783I
a = 0.055765 0.369318I
b = 0.341328 1.097470I
2.24452 0.13399I 0
u = 0.363800 + 0.683750I
a = 0.159725 0.902915I
b = 1.194090 0.050123I
4.64351 0.95645I 6.95143 + 0.40009I
u = 0.363800 0.683750I
a = 0.159725 + 0.902915I
b = 1.194090 + 0.050123I
4.64351 + 0.95645I 6.95143 0.40009I
u = 1.031700 + 0.690591I
a = 1.31406 + 0.73889I
b = 0.12386 + 2.26773I
4.53517 + 7.27554I 0
u = 1.031700 0.690591I
a = 1.31406 0.73889I
b = 0.12386 2.26773I
4.53517 7.27554I 0
u = 1.022320 + 0.715446I
a = 1.59446 0.20723I
b = 1.63571 2.33602I
0.41311 + 10.39030I 0
u = 1.022320 0.715446I
a = 1.59446 + 0.20723I
b = 1.63571 + 2.33602I
0.41311 10.39030I 0
u = 1.033670 + 0.722916I
a = 1.93233 + 0.24814I
b = 1.87661 + 3.18870I
2.0811 + 15.6439I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.033670 0.722916I
a = 1.93233 0.24814I
b = 1.87661 3.18870I
2.0811 15.6439I 0
u = 0.222610 + 0.700574I
a = 1.01534 1.68362I
b = 0.425358 1.228400I
3.29307 + 6.95572I 4.27136 6.38165I
u = 0.222610 0.700574I
a = 1.01534 + 1.68362I
b = 0.425358 + 1.228400I
3.29307 6.95572I 4.27136 + 6.38165I
u = 0.237379 + 0.619505I
a = 0.999266 + 0.903446I
b = 0.257184 + 0.499151I
0.72685 + 2.26761I 0.99875 3.18261I
u = 0.237379 0.619505I
a = 0.999266 0.903446I
b = 0.257184 0.499151I
0.72685 2.26761I 0.99875 + 3.18261I
u = 0.262483 + 0.300390I
a = 2.06293 + 0.91307I
b = 0.607715 + 1.007860I
0.30141 2.59969I 1.01042 + 4.25911I
u = 0.262483 0.300390I
a = 2.06293 0.91307I
b = 0.607715 1.007860I
0.30141 + 2.59969I 1.01042 4.25911I
u = 0.009849 + 0.393003I
a = 1.95800 0.60378I
b = 0.159962 0.526209I
0.74701 + 1.37700I 2.48134 4.28508I
u = 0.009849 0.393003I
a = 1.95800 + 0.60378I
b = 0.159962 + 0.526209I
0.74701 1.37700I 2.48134 + 4.28508I
11
II. I
u
2
= h−u
2
b + b
2
+ bu u + 1, a, u
3
u
2
+ 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
0
b
a
6
=
u
u
2
+ u + 1
a
5
=
u
2u
2
+ b + 2u + 1
a
9
=
u
2
+ 1
u
2
a
1
=
u
u
2
u 1
a
2
=
u
2
b
bu + 2b
a
8
=
0
u
a
4
=
0
b
a
4
=
0
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
b 2bu + u
2
+ 2u 5
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
7
u
6
c
4
(u
2
u + 1)
3
c
6
(u
3
+ u
2
1)
2
c
8
, c
11
(u
3
+ u
2
+ 2u + 1)
2
c
9
(u
3
u
2
+ 2u 1)
2
c
10
(u
3
u
2
+ 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
7
y
6
c
6
, c
10
(y
3
y
2
+ 2y 1)
2
c
8
, c
9
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0
b = 0.818128 0.292480I
3.02413 4.85801I 2.23639 + 5.66123I
u = 0.877439 + 0.744862I
a = 0
b = 0.155769 + 0.854759I
3.02413 0.79824I 0.946254 + 0.677361I
u = 0.877439 0.744862I
a = 0
b = 0.818128 + 0.292480I
3.02413 + 4.85801I 2.23639 5.66123I
u = 0.877439 0.744862I
a = 0
b = 0.155769 0.854759I
3.02413 + 0.79824I 0.946254 0.677361I
u = 0.754878
a = 0
b = 0.662359 + 1.147240I
1.11345 2.02988I 5.31735 + 1.07831I
u = 0.754878
a = 0
b = 0.662359 1.147240I
1.11345 + 2.02988I 5.31735 1.07831I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
69
+ 4u
68
+ ··· 3u 1)
c
2
((u
2
+ u + 1)
3
)(u
69
+ 34u
68
+ ··· 3u 1)
c
3
, c
7
u
6
(u
69
u
68
+ ··· + 224u + 64)
c
4
((u
2
u + 1)
3
)(u
69
+ 4u
68
+ ··· 3u 1)
c
5
((u
2
+ u + 1)
3
)(u
69
4u
68
+ ··· + 5265u 1153)
c
6
((u
3
+ u
2
1)
2
)(u
69
+ 3u
68
+ ··· + 2u + 1)
c
8
((u
3
+ u
2
+ 2u + 1)
2
)(u
69
3u
68
+ ··· 7540u + 937)
c
9
((u
3
u
2
+ 2u 1)
2
)(u
69
+ 23u
68
+ ··· 4u + 1)
c
10
((u
3
u
2
+ 1)
2
)(u
69
+ 3u
68
+ ··· + 2u + 1)
c
11
((u
3
+ u
2
+ 2u + 1)
2
)(u
69
+ 23u
68
+ ··· 4u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
69
+ 34y
68
+ ··· 3y 1)
c
2
((y
2
+ y + 1)
3
)(y
69
+ 6y
68
+ ··· + 29y 1)
c
3
, c
7
y
6
(y
69
+ 35y
68
+ ··· 44032y 4096)
c
5
((y
2
+ y + 1)
3
)(y
69
22y
68
+ ··· + 5956197y 1329409)
c
6
, c
10
((y
3
y
2
+ 2y 1)
2
)(y
69
23y
68
+ ··· 4y 1)
c
8
((y
3
+ 3y
2
+ 2y 1)
2
)(y
69
11y
68
+ ··· + 1.05001 × 10
7
y 877969)
c
9
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
69
+ 49y
68
+ ··· 4y 1)
17