12n
0421
(K12n
0421
)
A knot diagram
1
Linearized knot diagam
3 5 7 12 2 8 3 11 5 4 9 10
Solving Sequence
3,5
2
1,10
9 12 4 11 8 7 6
c
2
c
1
c
9
c
12
c
4
c
11
c
8
c
7
c
6
c
3
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h6.94451 × 10
73
u
53
1.34116 × 10
74
u
52
+ ··· + 3.81141 × 10
75
b 1.25088 × 10
75
,
3.43142 × 10
75
u
53
+ 7.05210 × 10
75
u
52
+ ··· + 3.23970 × 10
76
a + 1.89860 × 10
77
,
u
54
2u
53
+ ··· 112u + 17i
I
u
2
= h−44u
17
+ 4u
16
+ ··· + 69b + 127u, 44u
17
264u
15
+ ··· + 69a 224, u
18
+ 6u
16
+ ··· + 3u + 1i
I
u
3
= ha
4
a
3
u + 2a
2
au + b u + 2, a
5
a
4
+ 2a
3
a
2
+ a 1, u
2
+ 1i
I
u
4
= h−3u
3
+ 6u
2
+ 4b 5u + 1, u
3
+ 2a u + 3, u
4
u
3
+ u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 86 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h6.94 × 10
73
u
53
1.34 × 10
74
u
52
+ · · · + 3.81 × 10
75
b 1.25 ×
10
75
, 3.43 × 10
75
u
53
+ 7.05 × 10
75
u
52
+ · · · + 3.24 × 10
76
a + 1.90 ×
10
77
, u
54
2u
53
+ · · · 112u + 17i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
10
=
0.105918u
53
0.217677u
52
+ ··· + 63.2432u 5.86042
0.0182203u
53
+ 0.0351879u
52
+ ··· 10.1732u + 0.328192
a
9
=
0.105918u
53
0.217677u
52
+ ··· + 63.2432u 5.86042
0.0293505u
53
+ 0.0578164u
52
+ ··· 12.6281u + 0.427504
a
12
=
0.0377580u
53
+ 0.0561954u
52
+ ··· + 17.7971u 6.35371
0.0210496u
53
+ 0.0288416u
52
+ ··· 9.16703u + 1.99686
a
4
=
0.0736388u
53
0.109834u
52
+ ··· + 5.97498u + 3.87914
0.00164042u
53
+ 0.00683312u
52
+ ··· 1.67223u 0.577146
a
11
=
0.0157800u
53
0.0231466u
52
+ ··· + 29.3692u 3.16089
0.0328608u
53
+ 0.0646084u
52
+ ··· 11.4634u + 0.980987
a
8
=
0.0000582809u
53
+ 0.00965479u
52
+ ··· + 26.4948u 4.19485
0.0248738u
53
+ 0.0481071u
52
+ ··· 11.7942u + 1.11363
a
7
=
0.0248155u
53
+ 0.0577619u
52
+ ··· + 14.7006u 3.08122
0.0248738u
53
+ 0.0481071u
52
+ ··· 11.7942u + 1.11363
a
6
=
u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0961909u
53
0.214297u
52
+ ··· + 61.1959u + 0.495059
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
54
+ 60u
53
+ ··· + 17614u + 289
c
2
, c
5
u
54
+ 2u
53
+ ··· + 112u + 17
c
3
, c
7
u
54
+ 2u
53
+ ··· + 20u + 17
c
4
u
54
7u
53
+ ··· 8u + 4
c
6
u
54
20u
53
+ ··· 15886u + 289
c
8
, c
11
u
54
+ 4u
53
+ ··· + 481u + 16
c
9
2(2u
54
+ 11u
53
+ ··· + 27633u + 3982)
c
10
2(2u
54
+ 3u
53
+ ··· 26787u + 17894)
c
12
u
54
8u
53
+ ··· 2976u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
54
120y
53
+ ··· 34842354y + 83521
c
2
, c
5
y
54
+ 60y
53
+ ··· + 17614y + 289
c
3
, c
7
y
54
+ 20y
53
+ ··· + 15886y + 289
c
4
y
54
+ 17y
53
+ ··· + 152y + 16
c
6
y
54
+ 40y
53
+ ··· 35600546y + 83521
c
8
, c
11
y
54
32y
53
+ ··· 95457y + 256
c
9
4(4y
54
173y
53
+ ··· + 1.70212 × 10
8
y + 1.58563 × 10
7
)
c
10
4(4y
54
205y
53
+ ··· + 5.53025 × 10
9
y + 3.20195 × 10
8
)
c
12
y
54
12y
53
+ ··· 1545216y + 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.957433 + 0.281564I
a = 0.366782 + 0.368685I
b = 0.536027 0.041780I
0.08167 4.27758I 0. + 6.47467I
u = 0.957433 0.281564I
a = 0.366782 0.368685I
b = 0.536027 + 0.041780I
0.08167 + 4.27758I 0. 6.47467I
u = 0.793853 + 0.517771I
a = 0.989605 0.419229I
b = 0.745351 + 0.352281I
1.69843 + 5.87991I 0.83203 7.69197I
u = 0.793853 0.517771I
a = 0.989605 + 0.419229I
b = 0.745351 0.352281I
1.69843 5.87991I 0.83203 + 7.69197I
u = 1.013690 + 0.409819I
a = 1.40509 + 0.61654I
b = 1.023680 0.012588I
1.51017 + 11.89510I 0. 8.55352I
u = 1.013690 0.409819I
a = 1.40509 0.61654I
b = 1.023680 + 0.012588I
1.51017 11.89510I 0. + 8.55352I
u = 0.037687 + 0.876774I
a = 0.411613 0.841558I
b = 0.730721 0.454623I
1.21558 1.50306I 6.28567 + 3.87694I
u = 0.037687 0.876774I
a = 0.411613 + 0.841558I
b = 0.730721 + 0.454623I
1.21558 + 1.50306I 6.28567 3.87694I
u = 0.001197 + 1.155080I
a = 0.344466 + 1.134660I
b = 0.086158 + 0.503268I
4.74660 4.32144I 0
u = 0.001197 1.155080I
a = 0.344466 1.134660I
b = 0.086158 0.503268I
4.74660 + 4.32144I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.904014 + 0.749313I
a = 0.409227 0.949421I
b = 0.254579 0.478630I
0.351082 0.581835I 0
u = 0.904014 0.749313I
a = 0.409227 + 0.949421I
b = 0.254579 + 0.478630I
0.351082 + 0.581835I 0
u = 0.409754 + 0.654267I
a = 0.670688 0.470147I
b = 0.024664 0.332222I
0.11724 1.46636I 1.51920 + 4.74355I
u = 0.409754 0.654267I
a = 0.670688 + 0.470147I
b = 0.024664 + 0.332222I
0.11724 + 1.46636I 1.51920 4.74355I
u = 0.897207 + 0.878746I
a = 0.412964 + 0.196074I
b = 0.230506 + 0.127637I
8.36051 + 3.29219I 0
u = 0.897207 0.878746I
a = 0.412964 0.196074I
b = 0.230506 0.127637I
8.36051 3.29219I 0
u = 0.611149 + 0.347151I
a = 1.350850 0.353105I
b = 1.28376 + 1.02238I
3.32384 + 4.22762I 7.57484 8.95989I
u = 0.611149 0.347151I
a = 1.350850 + 0.353105I
b = 1.28376 1.02238I
3.32384 4.22762I 7.57484 + 8.95989I
u = 0.483135 + 0.456682I
a = 2.56114 3.18734I
b = 1.88415 + 0.56985I
1.86209 1.74879I 7.3853 15.6719I
u = 0.483135 0.456682I
a = 2.56114 + 3.18734I
b = 1.88415 0.56985I
1.86209 + 1.74879I 7.3853 + 15.6719I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.246711 + 0.521269I
a = 2.52817 + 2.38441I
b = 0.71366 1.77517I
1.60277 1.13073I 16.4890 + 3.6045I
u = 0.246711 0.521269I
a = 2.52817 2.38441I
b = 0.71366 + 1.77517I
1.60277 + 1.13073I 16.4890 3.6045I
u = 0.10747 + 1.43757I
a = 0.231658 + 0.116000I
b = 2.40283 0.09567I
1.12918 + 2.68232I 0
u = 0.10747 1.43757I
a = 0.231658 0.116000I
b = 2.40283 + 0.09567I
1.12918 2.68232I 0
u = 0.00780 + 1.45535I
a = 0.234240 0.821894I
b = 0.634589 + 0.224881I
3.51163 1.45830I 0
u = 0.00780 1.45535I
a = 0.234240 + 0.821894I
b = 0.634589 0.224881I
3.51163 + 1.45830I 0
u = 0.19633 + 1.47266I
a = 0.180761 + 0.764063I
b = 0.450752 0.458790I
2.64331 + 7.12189I 0
u = 0.19633 1.47266I
a = 0.180761 0.764063I
b = 0.450752 + 0.458790I
2.64331 7.12189I 0
u = 0.04819 + 1.51041I
a = 0.39189 1.67295I
b = 0.87803 2.40931I
5.05765 2.00436I 0
u = 0.04819 1.51041I
a = 0.39189 + 1.67295I
b = 0.87803 + 2.40931I
5.05765 + 2.00436I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.14469 + 1.50993I
a = 0.47360 + 1.91984I
b = 1.53856 + 2.59401I
4.66611 3.99543I 0
u = 0.14469 1.50993I
a = 0.47360 1.91984I
b = 1.53856 2.59401I
4.66611 + 3.99543I 0
u = 0.416507 + 0.239610I
a = 0.373760 0.682809I
b = 1.212780 0.597298I
4.35238 + 0.88122I 11.36984 2.33709I
u = 0.416507 0.239610I
a = 0.373760 + 0.682809I
b = 1.212780 + 0.597298I
4.35238 0.88122I 11.36984 + 2.33709I
u = 0.076348 + 0.449359I
a = 1.54451 2.17798I
b = 0.371098 0.688121I
7.12845 + 4.50045I 11.43251 4.54345I
u = 0.076348 0.449359I
a = 1.54451 + 2.17798I
b = 0.371098 + 0.688121I
7.12845 4.50045I 11.43251 + 4.54345I
u = 0.40434 + 1.49345I
a = 0.473577 + 0.252036I
b = 1.54220 0.04301I
5.61605 9.26553I 0
u = 0.40434 1.49345I
a = 0.473577 0.252036I
b = 1.54220 + 0.04301I
5.61605 + 9.26553I 0
u = 0.30238 + 1.53005I
a = 0.508036 0.093774I
b = 1.60740 + 0.32922I
8.31392 + 2.90879I 0
u = 0.30238 1.53005I
a = 0.508036 + 0.093774I
b = 1.60740 0.32922I
8.31392 2.90879I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.27909 + 1.54859I
a = 0.761075 0.328934I
b = 2.56556 0.27826I
8.47521 + 9.84153I 0
u = 0.27909 1.54859I
a = 0.761075 + 0.328934I
b = 2.56556 + 0.27826I
8.47521 9.84153I 0
u = 0.39619 + 1.53466I
a = 0.989911 + 0.661170I
b = 2.69175 + 0.38369I
4.7262 + 17.0140I 0
u = 0.39619 1.53466I
a = 0.989911 0.661170I
b = 2.69175 0.38369I
4.7262 17.0140I 0
u = 0.13238 + 1.58588I
a = 0.710747 + 0.251585I
b = 2.39257 + 0.46175I
10.02230 3.29278I 0
u = 0.13238 1.58588I
a = 0.710747 0.251585I
b = 2.39257 0.46175I
10.02230 + 3.29278I 0
u = 0.23845 + 1.60519I
a = 1.019030 0.001725I
b = 2.17248 + 0.26878I
8.27340 4.54754I 0
u = 0.23845 1.60519I
a = 1.019030 + 0.001725I
b = 2.17248 0.26878I
8.27340 + 4.54754I 0
u = 0.30330 + 1.60247I
a = 0.977488 0.584250I
b = 2.55816 0.50781I
7.29392 10.27410I 0
u = 0.30330 1.60247I
a = 0.977488 + 0.584250I
b = 2.55816 + 0.50781I
7.29392 + 10.27410I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.09043 + 1.66784I
a = 0.977056 0.182021I
b = 2.14804 0.39830I
9.44818 2.46020I 0
u = 0.09043 1.66784I
a = 0.977056 + 0.182021I
b = 2.14804 + 0.39830I
9.44818 + 2.46020I 0
u = 0.060670 + 0.183744I
a = 0.36004 + 5.05217I
b = 0.395346 1.125760I
1.88776 1.50114I 7.21238 + 4.30156I
u = 0.060670 0.183744I
a = 0.36004 5.05217I
b = 0.395346 + 1.125760I
1.88776 + 1.50114I 7.21238 4.30156I
10
II. I
u
2
= h−44u
17
+ 4u
16
+ · · · + 69b + 127u, 44u
17
264u
15
+ · · · + 69a
224, u
18
+ 6u
16
+ · · · + 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
10
=
0.637681u
17
+ 3.82609u
15
+ ··· + 2.66667u + 3.24638
0.637681u
17
0.0579710u
16
+ ··· + 3.91304u
2
1.84058u
a
9
=
0.637681u
17
+ 3.82609u
15
+ ··· + 2.66667u + 3.24638
0.637681u
17
+ 0.173913u
16
+ ··· + 5.24638u
2
2.47826u
a
12
=
0.594203u
17
+ 3.56522u
15
+ ··· + 3.66667u + 0.115942
0.594203u
17
0.594203u
16
+ ··· 3.55072u
2
0.115942u
a
4
=
u
2
+ 1
u
2
a
11
=
0.840580u
17
+ 5.04348u
15
+ ··· + 4.33333u + 3.18841
0.840580u
17
0.0579710u
16
+ ··· + 3.85507u
2
1.84058u
a
8
=
0
u
a
7
=
u
u
a
6
=
u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
20
23
u
15
+
100
23
u
13
+
44
23
u
12
+
200
23
u
11
+
176
23
u
10
+
316
23
u
9
+
264
23
u
8
+
448
23
u
7
+
260
23
u
6
+ 16u
5
+
212
23
u
4
+
208
23
u
3
+
84
23
u
2
+ 4u +
106
23
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 12u
17
+ ··· + 3u + 1
c
2
, c
3
, c
5
c
7
u
18
+ 6u
16
+ ··· 3u + 1
c
4
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
3
c
6
u
18
12u
17
+ ··· 3u + 1
c
8
, c
11
(u
6
+ u
5
u
4
2u
3
+ u + 1)
3
c
9
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
3
c
10
, c
12
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
18
12y
17
+ ··· + 95y + 1
c
2
, c
3
, c
5
c
7
y
18
+ 12y
17
+ ··· + 3y + 1
c
4
, c
9
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
c
8
, c
10
, c
11
c
12
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.577722 + 0.852843I
a = 0.598036 + 0.102351I
b = 0.488236 0.375359I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.577722 0.852843I
a = 0.598036 0.102351I
b = 0.488236 + 0.375359I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.196160 + 0.885066I
a = 0.419078 + 1.129010I
b = 2.92263 1.35280I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.196160 0.885066I
a = 0.419078 1.129010I
b = 2.92263 + 1.35280I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.945163 + 0.610473I
a = 1.206700 0.490377I
b = 0.819070 0.094621I
5.69302I 0. + 5.51057I
u = 0.945163 0.610473I
a = 1.206700 + 0.490377I
b = 0.819070 + 0.094621I
5.69302I 0. 5.51057I
u = 0.090472 + 1.133120I
a = 0.583686 + 0.762709I
b = 3.11733 0.76503I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.090472 1.133120I
a = 0.583686 0.762709I
b = 3.11733 + 0.76503I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.686633 + 0.502578I
a = 0.150201 0.718978I
b = 0.530542 0.156218I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.686633 0.502578I
a = 0.150201 + 0.718978I
b = 0.530542 + 0.156218I
1.89061 + 0.92430I 3.71672 0.79423I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.824262 + 0.925280I
a = 0.271648 + 1.151080I
b = 0.190767 + 0.581448I
5.69302I 0. + 5.51057I
u = 0.824262 0.925280I
a = 0.271648 1.151080I
b = 0.190767 0.581448I
5.69302I 0. 5.51057I
u = 0.108911 + 1.355420I
a = 0.402013 0.222804I
b = 1.71123 1.31922I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.108911 1.355420I
a = 0.402013 + 0.222804I
b = 1.71123 + 1.31922I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.12090 + 1.53575I
a = 0.819509 + 0.483205I
b = 2.32751 + 0.84183I
5.69302I 0. 5.51057I
u = 0.12090 1.53575I
a = 0.819509 0.483205I
b = 2.32751 0.84183I
5.69302I 0. + 5.51057I
u = 0.286632 + 0.248050I
a = 2.85200 + 0.40141I
b = 0.665192 0.947661I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.286632 0.248050I
a = 2.85200 0.40141I
b = 0.665192 + 0.947661I
1.89061 + 0.92430I 3.71672 0.79423I
15
III. I
u
3
= ha
4
a
3
u + 2a
2
au + b u + 2, a
5
a
4
+ 2a
3
a
2
+ a 1, u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
1
a
1
=
0
1
a
10
=
a
a
4
+ a
3
u 2a
2
+ au + u 2
a
9
=
a
a
4
+ a
3
u 2a
2
+ au a + u 2
a
12
=
a
2
a
4
u + a
4
a
2
u + a
2
au + a
a
4
=
a
4
u
1
a
11
=
a
4
a
4
2a
2
+ u 2
a
8
=
a
4
u
a
7
=
a
4
+ u
u
a
6
=
u
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
3
+ 4a
2
4a + 4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
10
c
2
, c
3
, c
5
c
7
(u
2
+ 1)
5
c
4
u
10
+ u
8
+ 8u
6
+ 3u
4
+ 3u
2
+ 1
c
6
(u + 1)
10
c
8
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
9
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1
c
10
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
c
11
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
12
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y 1)
10
c
2
, c
3
, c
5
c
7
(y + 1)
10
c
4
(y
5
+ y
4
+ 8y
3
+ 3y
2
+ 3y + 1)
2
c
8
, c
11
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
9
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
c
10
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
c
12
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.339110 + 0.822375I
b = 1.43128 + 1.79928I
0.32910 + 1.53058I 0.51511 4.43065I
u = 1.000000I
a = 0.339110 0.822375I
b = 0.331455 + 0.820551I
0.32910 1.53058I 0.51511 + 4.43065I
u = 1.000000I
a = 0.766826
b = 3.52181 + 2.21774I
2.40108 1.48110
u = 1.000000I
a = 0.455697 + 1.200150I
b = 0.0768928 + 0.0902877I
5.87256 4.40083I 4.74431 + 3.49859I
u = 1.000000I
a = 0.455697 1.200150I
b = 0.361438 0.927855I
5.87256 + 4.40083I 4.74431 3.49859I
u = 1.000000I
a = 0.339110 + 0.822375I
b = 0.331455 0.820551I
0.32910 + 1.53058I 0.51511 4.43065I
u = 1.000000I
a = 0.339110 0.822375I
b = 1.43128 1.79928I
0.32910 1.53058I 0.51511 + 4.43065I
u = 1.000000I
a = 0.766826
b = 3.52181 2.21774I
2.40108 1.48110
u = 1.000000I
a = 0.455697 + 1.200150I
b = 0.361438 + 0.927855I
5.87256 4.40083I 4.74431 + 3.49859I
u = 1.000000I
a = 0.455697 1.200150I
b = 0.0768928 0.0902877I
5.87256 + 4.40083I 4.74431 3.49859I
19
IV. I
u
4
= h−3u
3
+ 6u
2
+ 4b 5u + 1, u
3
+ 2a u + 3, u
4
u
3
+ u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
10
=
1
2
u
3
+
1
2
u
3
2
3
4
u
3
3
2
u
2
+
5
4
u
1
4
a
9
=
1
2
u
3
+
1
2
u
3
2
5
4
u
3
5
2
u
2
+
7
4
u +
1
4
a
12
=
u
2
+ 1
u
2
a
4
=
2u
3
u
2
1
u
3
u
2
1
a
11
=
1
2
u
3
+ u
2
+
1
2
u
1
2
5
4
u
3
3
2
u
2
+
7
4
u +
1
4
a
8
=
u
2
1
u
2
a
7
=
2u
2
1
u
2
a
6
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
71
16
u
3
+
7
8
u
2
+
241
16
u +
147
16
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
4
u
3
+ 3u
2
2u + 1
c
2
u
4
u
3
+ u
2
+ 1
c
4
u
4
u
3
+ 5u
2
+ u + 2
c
5
u
4
+ u
3
+ u
2
+ 1
c
6
u
4
+ 5u
3
+ 7u
2
+ 2u + 1
c
7
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
8
(u + 1)
4
c
9
, c
10
2(2u
4
u
3
+ 5u
2
+ u + 1)
c
11
(u 1)
4
c
12
u
4
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
2
, c
5
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
4
y
4
+ 9y
3
+ 31y
2
+ 19y + 4
c
6
y
4
11y
3
+ 31y
2
+ 10y + 1
c
8
, c
11
(y 1)
4
c
9
, c
10
4(4y
4
+ 19y
3
+ 31y
2
+ 9y + 1)
c
12
y
4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 1.92796 + 0.41333I
b = 0.28101 + 1.58096I
1.43393 1.41510I 5.77964 + 9.93490I
u = 0.351808 0.720342I
a = 1.92796 0.41333I
b = 0.28101 1.58096I
1.43393 + 1.41510I 5.77964 9.93490I
u = 0.851808 + 0.911292I
a = 0.322042 0.157780I
b = 0.156006 0.269484I
8.43568 + 3.16396I 15.2516 + 20.5289I
u = 0.851808 0.911292I
a = 0.322042 + 0.157780I
b = 0.156006 + 0.269484I
8.43568 3.16396I 15.2516 20.5289I
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
10
)(u
4
u
3
+ 3u
2
2u + 1)(u
18
+ 12u
17
+ ··· + 3u + 1)
· (u
54
+ 60u
53
+ ··· + 17614u + 289)
c
2
((u
2
+ 1)
5
)(u
4
u
3
+ u
2
+ 1)(u
18
+ 6u
16
+ ··· 3u + 1)
· (u
54
+ 2u
53
+ ··· + 112u + 17)
c
3
((u
2
+ 1)
5
)(u
4
u
3
+ 3u
2
2u + 1)(u
18
+ 6u
16
+ ··· 3u + 1)
· (u
54
+ 2u
53
+ ··· + 20u + 17)
c
4
(u
4
u
3
+ 5u
2
+ u + 2)(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
3
· (u
10
+ u
8
+ 8u
6
+ 3u
4
+ 3u
2
+ 1)(u
54
7u
53
+ ··· 8u + 4)
c
5
((u
2
+ 1)
5
)(u
4
+ u
3
+ u
2
+ 1)(u
18
+ 6u
16
+ ··· 3u + 1)
· (u
54
+ 2u
53
+ ··· + 112u + 17)
c
6
((u + 1)
10
)(u
4
+ 5u
3
+ ··· + 2u + 1)(u
18
12u
17
+ ··· 3u + 1)
· (u
54
20u
53
+ ··· 15886u + 289)
c
7
((u
2
+ 1)
5
)(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
18
+ 6u
16
+ ··· 3u + 1)
· (u
54
+ 2u
53
+ ··· + 20u + 17)
c
8
(u + 1)
4
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
3
· (u
54
+ 4u
53
+ ··· + 481u + 16)
c
9
4(2u
4
u
3
+ 5u
2
+ u + 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
3
· (u
10
3u
8
+ 4u
6
u
4
u
2
+ 1)(2u
54
+ 11u
53
+ ··· + 27633u + 3982)
c
10
4(2u
4
u
3
+ 5u
2
+ u + 1)(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1)(2u
54
+ 3u
53
+ ··· 26787u + 17894)
c
11
(u 1)
4
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
3
· (u
54
+ 4u
53
+ ··· + 481u + 16)
c
12
u
4
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
54
8u
53
+ ··· 2976u + 256)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
10
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
18
12y
17
+ ··· + 95y + 1)
· (y
54
120y
53
+ ··· 34842354y + 83521)
c
2
, c
5
((y + 1)
10
)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
18
+ 12y
17
+ ··· + 3y + 1)
· (y
54
+ 60y
53
+ ··· + 17614y + 289)
c
3
, c
7
((y + 1)
10
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
18
+ 12y
17
+ ··· + 3y + 1)
· (y
54
+ 20y
53
+ ··· + 15886y + 289)
c
4
(y
4
+ 9y
3
+ 31y
2
+ 19y + 4)(y
5
+ y
4
+ 8y
3
+ 3y
2
+ 3y + 1)
2
· ((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
)(y
54
+ 17y
53
+ ··· + 152y + 16)
c
6
((y 1)
10
)(y
4
11y
3
+ ··· + 10y + 1)(y
18
12y
17
+ ··· + 95y + 1)
· (y
54
+ 40y
53
+ ··· 35600546y + 83521)
c
8
, c
11
(y 1)
4
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
· (y
54
32y
53
+ ··· 95457y + 256)
c
9
16(4y
4
+ 19y
3
+ 31y
2
+ 9y + 1)(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
· (y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
· (4y
54
173y
53
+ ··· + 170212239y + 15856324)
c
10
16(4y
4
+ 19y
3
+ 31y
2
+ 9y + 1)(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
· (y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
· (4y
54
205y
53
+ ··· + 5530254095y + 320195236)
c
12
y
4
(y
5
+ 3y
4
+ ··· y 1)
2
(y
6
3y
5
+ ··· y + 1)
3
· (y
54
12y
53
+ ··· 1545216y + 65536)
25