12n
0426
(K12n
0426
)
A knot diagram
1
Linearized knot diagam
3 6 8 12 2 9 5 12 6 8 4 10
Solving Sequence
8,12 5,9
4 3 7 6 2 11 10 1
c
8
c
4
c
3
c
7
c
6
c
2
c
11
c
10
c
12
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
6
+ 2u
5
u
4
u
3
u
2
+ 3b + u 1, 5u
6
16u
5
+ 11u
4
+ 20u
3
19u
2
+ 6a 14u + 14,
u
7
4u
6
+ 5u
5
+ 2u
4
7u
3
+ 6u 2i
I
u
2
= h−u
5
2u
4
+ u
3
+ 3u
2
+ b + u 1, 3u
5
+ 4u
4
10u
3
11u
2
+ 2a + 5u + 12,
u
6
+ 2u
5
2u
4
5u
3
u
2
+ 4u + 2i
I
u
3
= hb + u, a + u, u
2
+ u 1i
I
u
4
= hb a u 1, a
2
+ au + 2a + 2u + 1, u
2
+ u 1i
I
u
5
= hu
3
2u
2
+ b + 2u 1, u
3
+ 2u
2
+ a 3u + 2, u
4
2u
3
+ 4u
2
3u + 1i
* 5 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
6
+ 2u
5
u
4
u
3
u
2
+ 3b + u 1, 5u
6
16u
5
+ · · · + 6a +
14, u
7
4u
6
+ 5u
5
+ 2u
4
7u
3
+ 6u 2i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
5
=
5
6
u
6
+
8
3
u
5
+ ··· +
7
3
u
7
3
1
3
u
6
2
3
u
5
+ ···
1
3
u +
1
3
a
9
=
1
u
2
a
4
=
5
6
u
6
+
8
3
u
5
+ ··· +
7
3
u
7
3
2
3
u
6
7
3
u
5
+ ···
8
3
u +
5
3
a
3
=
1
6
u
6
+
1
3
u
5
+ ···
1
3
u
2
3
2
3
u
6
7
3
u
5
+ ···
8
3
u +
5
3
a
7
=
1
6
u
6
1
3
u
5
+ ···
2
3
u +
5
3
1
3
u
6
2
3
u
5
+ ···
4
3
u +
1
3
a
6
=
1
6
u
6
+
1
3
u
5
+ ···
1
3
u +
4
3
u
6
+ 3u
5
2u
4
3u
3
+ 2u
2
+ 2u 1
a
2
=
1
2
u
6
+ u
5
+
1
2
u
4
3u
3
+
1
2
u
2
+ 2u 1
1
3
u
6
+
2
3
u
5
+ ··· +
7
3
u
1
3
a
11
=
1
6
u
6
+
1
3
u
5
+ ··· +
2
3
u +
1
3
1
3
u
6
2
3
u
5
+ ···
1
3
u +
1
3
a
10
=
1
6
u
6
1
3
u
5
+ ··· +
1
3
u +
2
3
1
3
u
6
2
3
u
5
+ ···
1
3
u +
1
3
a
1
=
1
6
u
6
1
3
u
5
+ ··· +
1
3
u
1
3
u
5
u
4
2u
3
+ 2u
2
+ 3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
6u
5
+ 4u
4
+ 6u
3
10u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
7
+ 6u
6
+ 27u
5
+ 62u
4
+ 93u
3
+ 76u
2
+ 36u + 4
c
2
, c
5
, c
8
u
7
+ 4u
6
+ 5u
5
2u
4
7u
3
+ 6u + 2
c
3
, c
4
, c
11
u
7
+ 3u
6
2u
5
8u
4
+ 2u
3
+ 4u
2
+ 3u + 1
c
6
, c
7
, c
9
c
12
u
7
u
6
+ 6u
5
+ 6u
4
+ 12u
3
+ 8u
2
+ 5u + 1
c
10
u
7
9u
6
+ 29u
5
47u
4
+ 60u
3
40u
2
+ 12u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
7
+ 18y
6
+ 171y
5
+ 338y
4
+ 1121y
3
+ 424y
2
+ 688y 16
c
2
, c
5
, c
8
y
7
6y
6
+ 27y
5
62y
4
+ 93y
3
76y
2
+ 36y 4
c
3
, c
4
, c
11
y
7
13y
6
+ 56y
5
90y
4
+ 50y
3
+ 12y
2
+ y 1
c
6
, c
7
, c
9
c
12
y
7
+ 11y
6
+ 72y
5
+ 134y
4
+ 110y
3
+ 44y
2
+ 9y 1
c
10
y
7
23y
6
+ 115y
5
+ 575y
4
+ 608y
3
+ 216y
2
+ 464y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.877051 + 0.401438I
a = 0.390423 0.367676I
b = 0.173321 0.977693I
1.59409 + 3.78166I 7.32325 7.33619I
u = 0.877051 0.401438I
a = 0.390423 + 0.367676I
b = 0.173321 + 0.977693I
1.59409 3.78166I 7.32325 + 7.33619I
u = 1.140270 + 0.557068I
a = 0.742429 0.652700I
b = 0.353960 + 0.627763I
2.78671 4.23450I 16.3139 + 4.7703I
u = 1.140270 0.557068I
a = 0.742429 + 0.652700I
b = 0.353960 0.627763I
2.78671 + 4.23450I 16.3139 4.7703I
u = 0.389062
a = 1.16362
b = 0.276584
0.727542 13.4920
u = 1.54225 + 1.02576I
a = 1.051040 + 0.651247I
b = 1.16557 2.38792I
4.02380 9.18258I 12.61674 + 3.92434I
u = 1.54225 1.02576I
a = 1.051040 0.651247I
b = 1.16557 + 2.38792I
4.02380 + 9.18258I 12.61674 3.92434I
5
II. I
u
2
= h−u
5
2u
4
+ u
3
+ 3u
2
+ b + u 1, 3u
5
+ 4u
4
10u
3
11u
2
+ 2a +
5u + 12, u
6
+ 2u
5
2u
4
5u
3
u
2
+ 4u + 2i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
5
=
3
2
u
5
2u
4
+ 5u
3
+
11
2
u
2
5
2
u 6
u
5
+ 2u
4
u
3
3u
2
u + 1
a
9
=
1
u
2
a
4
=
3
2
u
5
2u
4
+ 5u
3
+
11
2
u
2
5
2
u 6
u
5
+ 2u
4
2u
3
4u
2
+ 3
a
3
=
1
2
u
5
+ 3u
3
+
3
2
u
2
5
2
u 3
u
5
+ 2u
4
2u
3
4u
2
+ 3
a
7
=
3
2
u
5
+ 2u
4
4u
3
9
2
u
2
+
3
2
u + 6
u
3
+ u
2
1
a
6
=
1
2
u
5
+ u
4
u
3
5
2
u
2
+
1
2
u + 3
u
5
u
4
+ 4u
3
+ 3u
2
2u 3
a
2
=
3
2
u
5
+ 2u
4
4u
3
7
2
u
2
+
3
2
u + 4
u
2
+ u 1
a
11
=
7
2
u
5
5u
4
+ 10u
3
+
23
2
u
2
7
2
u 12
2u
5
+ 3u
4
6u
3
7u
2
+ 3u + 7
a
10
=
3
2
u
5
2u
4
+ 4u
3
+
9
2
u
2
1
2
u 5
2u
5
+ 3u
4
6u
3
7u
2
+ 3u + 7
a
1
=
9
2
u
5
+ 6u
4
13u
3
27
2
u
2
+
9
2
u + 14
4u
5
6u
4
+ 11u
3
+ 15u
2
3u 15
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
2u
3
+ u
2
+ 2u 10
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
8u
5
+ 22u
4
33u
3
+ 33u
2
20u + 4
c
2
, c
8
u
6
+ 2u
5
2u
4
5u
3
u
2
+ 4u + 2
c
3
, c
11
(u
3
+ 2u
2
+ 1)
2
c
4
(u
3
2u
2
1)
2
c
5
u
6
2u
5
2u
4
+ 5u
3
u
2
4u + 2
c
6
u
6
3u
5
+ 3u
4
3u
3
3u
2
+ 4u 1
c
7
, c
9
, c
12
u
6
+ 3u
5
+ 3u
4
+ 3u
3
3u
2
4u 1
c
10
u
6
+ 6u
5
+ 3u
4
21u
3
5u
2
+ 25u + 13
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
20y
5
+ 22y
4
+ 51y
3
55y
2
136y + 16
c
2
, c
5
, c
8
y
6
8y
5
+ 22y
4
33y
3
+ 33y
2
20y + 4
c
3
, c
4
, c
11
(y
3
4y
2
4y 1)
2
c
6
, c
7
, c
9
c
12
y
6
3y
5
15y
4
5y
3
+ 27y
2
10y + 1
c
10
y
6
30y
5
+ 251y
4
745y
3
+ 1153y
2
755y + 169
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.853859 + 0.662904I
a = 0.452623 0.427953I
b = 0.456155 + 0.029114I
1.03690 + 2.56897I 11.22670 1.46771I
u = 0.853859 0.662904I
a = 0.452623 + 0.427953I
b = 0.456155 0.029114I
1.03690 2.56897I 11.22670 + 1.46771I
u = 1.183340 + 0.139351I
a = 0.020355 + 0.564750I
b = 0.31715 + 1.43860I
1.03690 + 2.56897I 11.22670 1.46771I
u = 1.183340 0.139351I
a = 0.020355 0.564750I
b = 0.31715 1.43860I
1.03690 2.56897I 11.22670 + 1.46771I
u = 0.579846
a = 3.80372
b = 0.926680
13.5883 10.5470
u = 2.07912
a = 1.06082
b = 2.38008
13.5883 10.5470
9
III. I
u
3
= hb + u, a + u, u
2
+ u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
5
=
u
u
a
9
=
1
u + 1
a
4
=
u
u 1
a
3
=
1
u 1
a
7
=
u
u 1
a
6
=
0
u
a
2
=
1
0
a
11
=
2u 1
2u + 2
a
10
=
1
2u + 2
a
1
=
u
3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
11
u
2
3u + 1
c
2
, c
6
, c
8
u
2
+ u 1
c
4
u
2
+ 3u + 1
c
5
, c
7
, c
9
c
12
u
2
u 1
c
10
u
2
+ 6u + 4
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
11
y
2
7y + 1
c
2
, c
5
, c
6
c
7
, c
8
, c
9
c
12
y
2
3y + 1
c
10
y
2
28y + 16
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.618034
b = 0.618034
1.97392 20.0000
u = 1.61803
a = 1.61803
b = 1.61803
17.7653 20.0000
13
IV. I
u
4
= hb a u 1, a
2
+ au + 2a + 2u + 1, u
2
+ u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
5
=
a
a + u + 1
a
9
=
1
u + 1
a
4
=
a
au + u + 1
a
3
=
au + a + u + 1
au + u + 1
a
7
=
a + 2u + 2
au + u 1
a
6
=
u + 1
a 1
a
2
=
au + a + u + 2
1
a
11
=
au a + u 2
2u + 1
a
10
=
au a u 1
2u + 1
a
1
=
a + 2
2au + a u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
+ 3u + 1)
2
c
2
, c
5
, c
8
(u
2
u 1)
2
c
3
, c
4
, c
11
u
4
+ u
3
6u
2
10u 5
c
6
, c
7
, c
9
c
12
u
4
u
3
2u
2
2u 1
c
10
(u
2
+ 4u 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
7y + 1)
2
c
2
, c
5
, c
8
(y
2
3y + 1)
2
c
3
, c
4
, c
11
y
4
13y
3
+ 46y
2
40y + 25
c
6
, c
7
, c
9
c
12
y
4
5y
3
2y
2
+ 1
c
10
(y
2
18y + 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.30902 + 0.72287I
b = 0.309017 + 0.722871I
0.328987 14.0000
u = 0.618034
a = 1.30902 0.72287I
b = 0.309017 0.722871I
0.328987 14.0000
u = 1.61803
a = 1.31651
b = 0.698478
16.1204 14.0000
u = 1.61803
a = 1.69848
b = 2.31651
16.1204 14.0000
17
V.
I
u
5
= hu
3
2u
2
+ b + 2u 1, u
3
+ 2u
2
+ a 3u + 2, u
4
2u
3
+ 4u
2
3u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
5
=
u
3
2u
2
+ 3u 2
u
3
+ 2u
2
2u + 1
a
9
=
1
u
2
a
4
=
u
3
2u
2
+ 3u 2
u
2
u + 1
a
3
=
u
3
u
2
+ 2u 1
u
2
u + 1
a
7
=
u
2
2u + 2
u
3
u
2
+ 2u 1
a
6
=
u
3
+ 2u
2
3u + 2
0
a
2
=
0
u
2
u + 1
a
11
=
u + 1
u
2
a
10
=
u
2
u + 1
u
2
a
1
=
u
3
u
2
u
3
+ u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ u 13
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
4
4u
3
+ 6u
2
+ u + 1
c
2
, c
5
, c
8
u
4
+ 2u
3
+ 4u
2
+ 3u + 1
c
3
, c
4
, c
11
(u
2
u 1)
2
c
6
, c
7
, c
9
c
12
u
4
u
3
+ 6u
2
+ 4u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
4
4y
3
+ 46y
2
+ 11y + 1
c
2
, c
5
, c
8
y
4
+ 4y
3
+ 6y
2
y + 1
c
3
, c
4
, c
11
(y
2
3y + 1)
2
c
6
, c
7
, c
9
c
12
y
4
+ 11y
3
+ 46y
2
4y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.363271I
a = 0.809017 + 0.587785I
b = 0.309017 0.224514I
0.657974 12.61803 + 0.I
u = 0.500000 0.363271I
a = 0.809017 0.587785I
b = 0.309017 + 0.224514I
0.657974 12.61803 + 0.I
u = 0.50000 + 1.53884I
a = 0.309017 0.951057I
b = 0.80902 + 2.48990I
7.23771 10.38197 + 0.I
u = 0.50000 1.53884I
a = 0.309017 + 0.951057I
b = 0.80902 2.48990I
7.23771 10.38197 + 0.I
21
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
3u + 1)(u
2
+ 3u + 1)
2
(u
4
4u
3
+ 6u
2
+ u + 1)
· (u
6
8u
5
+ 22u
4
33u
3
+ 33u
2
20u + 4)
· (u
7
+ 6u
6
+ 27u
5
+ 62u
4
+ 93u
3
+ 76u
2
+ 36u + 4)
c
2
, c
8
(u
2
u 1)
2
(u
2
+ u 1)(u
4
+ 2u
3
+ 4u
2
+ 3u + 1)
· (u
6
+ 2u
5
2u
4
5u
3
u
2
+ 4u + 2)
· (u
7
+ 4u
6
+ 5u
5
2u
4
7u
3
+ 6u + 2)
c
3
, c
11
(u
2
3u + 1)(u
2
u 1)
2
(u
3
+ 2u
2
+ 1)
2
(u
4
+ u
3
+ ··· 10u 5)
· (u
7
+ 3u
6
2u
5
8u
4
+ 2u
3
+ 4u
2
+ 3u + 1)
c
4
((u
2
u 1)
2
)(u
2
+ 3u + 1)(u
3
2u
2
1)
2
(u
4
+ u
3
+ ··· 10u 5)
· (u
7
+ 3u
6
2u
5
8u
4
+ 2u
3
+ 4u
2
+ 3u + 1)
c
5
(u
2
u 1)
3
(u
4
+ 2u
3
+ 4u
2
+ 3u + 1)
· (u
6
2u
5
2u
4
+ 5u
3
u
2
4u + 2)
· (u
7
+ 4u
6
+ 5u
5
2u
4
7u
3
+ 6u + 2)
c
6
(u
2
+ u 1)(u
4
u
3
2u
2
2u 1)(u
4
u
3
+ 6u
2
+ 4u + 1)
· (u
6
3u
5
+ 3u
4
3u
3
3u
2
+ 4u 1)
· (u
7
u
6
+ 6u
5
+ 6u
4
+ 12u
3
+ 8u
2
+ 5u + 1)
c
7
, c
9
, c
12
(u
2
u 1)(u
4
u
3
2u
2
2u 1)(u
4
u
3
+ 6u
2
+ 4u + 1)
· (u
6
+ 3u
5
+ 3u
4
+ 3u
3
3u
2
4u 1)
· (u
7
u
6
+ 6u
5
+ 6u
4
+ 12u
3
+ 8u
2
+ 5u + 1)
c
10
(u
2
+ 4u 1)
2
(u
2
+ 6u + 4)(u
4
4u
3
+ 6u
2
+ u + 1)
· (u
6
+ 6u
5
+ 3u
4
21u
3
5u
2
+ 25u + 13)
· (u
7
9u
6
+ 29u
5
47u
4
+ 60u
3
40u
2
+ 12u + 4)
22
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
7y + 1)
3
(y
4
4y
3
+ 46y
2
+ 11y + 1)
· (y
6
20y
5
+ 22y
4
+ 51y
3
55y
2
136y + 16)
· (y
7
+ 18y
6
+ 171y
5
+ 338y
4
+ 1121y
3
+ 424y
2
+ 688y 16)
c
2
, c
5
, c
8
(y
2
3y + 1)
3
(y
4
+ 4y
3
+ 6y
2
y + 1)
· (y
6
8y
5
+ 22y
4
33y
3
+ 33y
2
20y + 4)
· (y
7
6y
6
+ 27y
5
62y
4
+ 93y
3
76y
2
+ 36y 4)
c
3
, c
4
, c
11
(y
2
7y + 1)(y
2
3y + 1)
2
(y
3
4y
2
4y 1)
2
· (y
4
13y
3
+ 46y
2
40y + 25)
· (y
7
13y
6
+ 56y
5
90y
4
+ 50y
3
+ 12y
2
+ y 1)
c
6
, c
7
, c
9
c
12
(y
2
3y + 1)(y
4
5y
3
2y
2
+ 1)(y
4
+ 11y
3
+ 46y
2
4y + 1)
· (y
6
3y
5
15y
4
5y
3
+ 27y
2
10y + 1)
· (y
7
+ 11y
6
+ 72y
5
+ 134y
4
+ 110y
3
+ 44y
2
+ 9y 1)
c
10
(y
2
28y + 16)(y
2
18y + 1)
2
(y
4
4y
3
+ 46y
2
+ 11y + 1)
· (y
6
30y
5
+ 251y
4
745y
3
+ 1153y
2
755y + 169)
· (y
7
23y
6
+ 115y
5
+ 575y
4
+ 608y
3
+ 216y
2
+ 464y 16)
23