12n
0430
(K12n
0430
)
A knot diagram
1
Linearized knot diagam
3 5 10 9 2 10 3 5 12 6 4 8
Solving Sequence
10,12 5,9
4 3 2 8 1 7 6 11
c
9
c
4
c
3
c
2
c
8
c
12
c
7
c
6
c
11
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h5393u
16
+ 7516u
15
+ ··· + 113834b + 14038, 56628u
16
+ 74607u
15
+ ··· + 56917a + 70450,
u
17
2u
16
+ ··· 3u + 1i
I
u
2
= h586u
16
+ 3093u
15
+ ··· + 176b + 851, 174u
16
+ 1095u
15
+ ··· + 88a + 969, u
17
+ 6u
16
+ ··· + 7u + 1i
* 2 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h5393u
16
+ 7516u
15
+ · · · + 113834b + 14038, 56628u
16
+
74607u
15
+ · · · + 56917a + 70450, u
17
2u
16
+ · · · 3u + 1i
(i) Arc colorings
a
10
=
1
0
a
12
=
0
u
a
5
=
0.994922u
16
1.31080u
15
+ ··· + 4.13788u 1.23777
0.0473760u
16
0.0660260u
15
+ ··· + 0.122169u 0.123320
a
9
=
1
u
2
a
4
=
0.477898u
16
0.823497u
15
+ ··· + 3.21785u 0.682046
0.443259u
16
+ 0.608096u
15
+ ··· 1.00104u + 0.423424
a
3
=
0.921157u
16
1.43159u
15
+ ··· + 4.21889u 1.10547
0.443259u
16
+ 0.608096u
15
+ ··· 1.00104u + 0.423424
a
2
=
0.425585u
16
+ 0.0861869u
15
+ ··· + 1.60377u + 0.623056
u
2
a
8
=
0.328742u
16
1.22857u
15
+ ··· + 1.16794u 1.55584
0.0276279u
16
+ 0.220628u
15
+ ··· 0.602685u + 0.647443
a
1
=
0.112286u
16
+ 0.00399705u
15
+ ··· + 2.05786u 0.526196
0.290282u
16
0.397597u
15
+ ··· + 0.452817u + 0.188204
a
7
=
2.03864u
16
+ 3.21241u
15
+ ··· 6.13918u + 2.03644
0.405714u
16
0.285214u
15
+ ··· + 0.00505121u + 0.301114
a
6
=
1.63293u
16
+ 2.92720u
15
+ ··· 6.13413u + 2.33755
0.405714u
16
0.285214u
15
+ ··· + 0.00505121u + 0.301114
a
11
=
1.71543u
16
+ 2.52797u
15
+ ··· 3.79178u + 2.31009
0.0167876u
16
+ 0.211167u
15
+ ··· 0.0891034u + 0.108351
(ii) Obstruction class = 1
(iii) Cusp Shapes =
49715
8131
u
16
+
80546
8131
u
15
+ ···
140656
8131
u +
65802
8131
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 31u
16
+ ··· 143264u 13456
c
2
, c
5
u
17
+ 5u
16
+ ··· + 324u 116
c
3
u
17
8u
15
+ ··· 353u 89
c
4
, c
8
u
17
+ 14u
15
+ ··· + 664u 161
c
6
, c
10
u
17
13u
15
+ ··· + 491u 113
c
7
u
17
+ 3u
16
+ ··· 2u 1
c
9
u
17
+ 2u
16
+ ··· 3u 1
c
11
u
17
2u
16
+ ··· 7040u 5641
c
12
u
17
4u
16
+ ··· + 54780u 10369
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 11y
16
+ ··· + 7175468160y 181063936
c
2
, c
5
y
17
+ 31y
16
+ ··· 143264y 13456
c
3
y
17
16y
16
+ ··· + 32227y 7921
c
4
, c
8
y
17
+ 28y
16
+ ··· + 580966y 25921
c
6
, c
10
y
17
26y
16
+ ··· + 68417y 12769
c
7
y
17
+ 31y
16
+ ··· 2y 1
c
9
y
17
+ 2y
16
+ ··· + y 1
c
11
y
17
28y
16
+ ··· + 15817138y 31820881
c
12
y
17
+ 40y
16
+ ··· 105102598y 107516161
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.362254 + 0.899149I
a = 0.508122 0.988405I
b = 0.494404 + 0.009659I
7.23529 1.23787I 0.881318 0.776121I
u = 0.362254 0.899149I
a = 0.508122 + 0.988405I
b = 0.494404 0.009659I
7.23529 + 1.23787I 0.881318 + 0.776121I
u = 0.521342 + 0.748526I
a = 0.957661 0.986783I
b = 0.120151 + 0.418864I
6.57952 + 4.86431I 3.62543 7.86944I
u = 0.521342 0.748526I
a = 0.957661 + 0.986783I
b = 0.120151 0.418864I
6.57952 4.86431I 3.62543 + 7.86944I
u = 0.179836 + 0.612795I
a = 0.209052 + 0.316220I
b = 0.642189 + 0.262178I
0.94259 1.35597I 2.95073 + 4.86153I
u = 0.179836 0.612795I
a = 0.209052 0.316220I
b = 0.642189 0.262178I
0.94259 + 1.35597I 2.95073 4.86153I
u = 0.608474
a = 1.54897
b = 0.776291
1.24807 10.3340
u = 1.103650 + 0.854632I
a = 0.354799 + 1.315260I
b = 1.46583 0.63451I
2.93182 3.02594I 2.01363 + 1.83200I
u = 1.103650 0.854632I
a = 0.354799 1.315260I
b = 1.46583 + 0.63451I
2.93182 + 3.02594I 2.01363 1.83200I
u = 0.86904 + 1.16197I
a = 1.202500 0.252987I
b = 1.63818 0.34892I
1.82701 4.29273I 1.50320 + 2.40550I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.86904 1.16197I
a = 1.202500 + 0.252987I
b = 1.63818 + 0.34892I
1.82701 + 4.29273I 1.50320 2.40550I
u = 1.00617 + 1.09412I
a = 0.91587 + 1.51470I
b = 2.31303 0.28490I
17.3067 + 11.4081I 1.65806 4.29006I
u = 1.00617 1.09412I
a = 0.91587 1.51470I
b = 2.31303 + 0.28490I
17.3067 11.4081I 1.65806 + 4.29006I
u = 1.11198 + 0.98896I
a = 0.990744 0.722226I
b = 2.32313 0.15197I
17.7203 3.6735I 1.99465 + 0.48580I
u = 1.11198 0.98896I
a = 0.990744 + 0.722226I
b = 2.32313 + 0.15197I
17.7203 + 3.6735I 1.99465 0.48580I
u = 0.455022 + 0.222930I
a = 0.24214 + 2.49180I
b = 0.217538 0.475765I
0.66649 + 1.83609I 2.85826 4.77361I
u = 0.455022 0.222930I
a = 0.24214 2.49180I
b = 0.217538 + 0.475765I
0.66649 1.83609I 2.85826 + 4.77361I
6
II. I
u
2
= h586u
16
+ 3093u
15
+ · · · + 176b + 851, 174u
16
+ 1095u
15
+ · · · +
88a + 969, u
17
+ 6u
16
+ · · · + 7u + 1i
(i) Arc colorings
a
10
=
1
0
a
12
=
0
u
a
5
=
1.97727u
16
12.4432u
15
+ ··· 40.8977u 11.0114
3.32955u
16
17.5739u
15
+ ··· 22.4830u 4.83523
a
9
=
1
u
2
a
4
=
5.89773u
16
33.6193u
15
+ ··· 69.4148u 16.4261
4.01136u
16
22.0909u
15
+ ··· 34.9886u 7.18182
a
3
=
1.88636u
16
11.5284u
15
+ ··· 34.4261u 9.24432
4.01136u
16
22.0909u
15
+ ··· 34.9886u 7.18182
a
2
=
6.55114u
16
36.0341u
15
+ ··· 48.8239u 7.19318
u
2
a
8
=
0.801136u
16
+ 5.65909u
15
+ ··· + 7.44886u 1.43182
2.50568u
16
14.9830u
15
+ ··· 33.8068u 7.65341
a
1
=
5.09659u
16
27.8977u
15
+ ··· 40.7784u 8.42045
3.01136u
16
+ 16.0909u
15
+ ··· + 14.9886u + 0.181818
a
7
=
3.06818u
16
15.2330u
15
+ ··· 9.99432u 2.90341
0.903409u
16
3.97727u
15
+ ··· 2.84659u 1.70455
a
6
=
3.97159u
16
19.2102u
15
+ ··· 12.8409u 4.60795
0.903409u
16
3.97727u
15
+ ··· 2.84659u 1.70455
a
11
=
6.00568u
16
+ 32.2955u
15
+ ··· + 54.2443u + 14.8409
0.704545u
16
+ 3.32386u
15
+ ··· + 7.35795u + 3.08523
(ii) Obstruction class = 1
(iii) Cusp Shapes =
71
88
u
16
+
87
22
u
15
+ ···
27
88
u
13
22
7
(iv) u-Polynomials at the component
8
Crossings u-Polynomials at each crossing
c
1
u
17
15u
16
+ ··· 144u + 16
c
2
u
17
+ 3u
16
+ ··· + 8u + 4
c
3
u
17
+ 2u
15
+ ··· u 1
c
4
u
17
+ 6u
15
+ ··· + 2u 1
c
5
u
17
3u
16
+ ··· + 8u 4
c
6
u
17
2u
16
+ ··· + 3u 1
c
7
u
17
+ u
16
+ ··· + 2u + 1
c
8
u
17
+ 6u
15
+ ··· + 2u + 1
c
9
u
17
+ 6u
16
+ ··· + 7u + 1
c
10
u
17
+ 2u
16
+ ··· + 3u + 1
c
11
u
17
6u
15
+ ··· 2u + 1
c
12
u
17
+ 2u
16
+ ··· 6u + 1
9
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
21y
16
+ ··· + 896y 256
c
2
, c
5
y
17
+ 15y
16
+ ··· 144y 16
c
3
y
17
+ 4y
16
+ ··· + 7y 1
c
4
, c
8
y
17
+ 12y
16
+ ··· 14y 1
c
6
, c
10
y
17
6y
16
+ ··· 3y 1
c
7
y
17
+ 31y
16
+ ··· + 46y 1
c
9
y
17
+ 2y
16
+ ··· + 9y 1
c
11
y
17
12y
16
+ ··· 22y 1
c
12
y
17
+ 8y
16
+ ··· + 30y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.663834 + 0.651775I
a = 0.943799 0.890365I
b = 1.067980 0.354608I
1.273240 0.057282I 2.81611 0.19040I
u = 0.663834 0.651775I
a = 0.943799 + 0.890365I
b = 1.067980 + 0.354608I
1.273240 + 0.057282I 2.81611 + 0.19040I
u = 0.833502 + 0.399060I
a = 0.031669 + 0.929376I
b = 0.809508 0.849987I
2.84392 + 1.35053I 2.24307 2.14121I
u = 0.833502 0.399060I
a = 0.031669 0.929376I
b = 0.809508 + 0.849987I
2.84392 1.35053I 2.24307 + 2.14121I
u = 0.532887 + 0.962901I
a = 1.44876 0.06054I
b = 0.748089 0.622928I
4.72942 + 3.29248I 0.14195 3.24278I
u = 0.532887 0.962901I
a = 1.44876 + 0.06054I
b = 0.748089 + 0.622928I
4.72942 3.29248I 0.14195 + 3.24278I
u = 0.042338 + 0.877922I
a = 0.23026 1.50709I
b = 0.611186 + 0.415473I
8.17306 + 1.94502I 5.85947 3.89574I
u = 0.042338 0.877922I
a = 0.23026 + 1.50709I
b = 0.611186 0.415473I
8.17306 1.94502I 5.85947 + 3.89574I
u = 0.660026 + 1.092400I
a = 0.184327 + 0.822457I
b = 1.27739 0.92461I
0.14701 5.07773I 2.20879 + 6.02432I
u = 0.660026 1.092400I
a = 0.184327 0.822457I
b = 1.27739 + 0.92461I
0.14701 + 5.07773I 2.20879 6.02432I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.559508 + 0.431950I
a = 0.51799 1.76316I
b = 0.215995 + 0.599967I
6.21673 4.10194I 1.014362 0.459850I
u = 0.559508 0.431950I
a = 0.51799 + 1.76316I
b = 0.215995 0.599967I
6.21673 + 4.10194I 1.014362 + 0.459850I
u = 1.20705 + 0.84824I
a = 0.473403 + 1.265630I
b = 1.95203 + 0.61047I
4.35554 2.89495I 10.74646 + 0.70267I
u = 1.20705 0.84824I
a = 0.473403 1.265630I
b = 1.95203 0.61047I
4.35554 + 2.89495I 10.74646 0.70267I
u = 1.07765 + 1.20640I
a = 0.558261 1.009500I
b = 2.68997 + 0.21065I
3.26824 5.33607I 6.67246 + 8.79937I
u = 1.07765 1.20640I
a = 0.558261 + 1.009500I
b = 2.68997 0.21065I
3.26824 + 5.33607I 6.67246 8.79937I
u = 0.311963
a = 3.30327
b = 1.47445
0.107313 0.132300
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
15u
16
+ ··· 144u + 16)
· (u
17
+ 31u
16
+ ··· 143264u 13456)
c
2
(u
17
+ 3u
16
+ ··· + 8u + 4)(u
17
+ 5u
16
+ ··· + 324u 116)
c
3
(u
17
8u
15
+ ··· 353u 89)(u
17
+ 2u
15
+ ··· u 1)
c
4
(u
17
+ 6u
15
+ ··· + 2u 1)(u
17
+ 14u
15
+ ··· + 664u 161)
c
5
(u
17
3u
16
+ ··· + 8u 4)(u
17
+ 5u
16
+ ··· + 324u 116)
c
6
(u
17
13u
15
+ ··· + 491u 113)(u
17
2u
16
+ ··· + 3u 1)
c
7
(u
17
+ u
16
+ ··· + 2u + 1)(u
17
+ 3u
16
+ ··· 2u 1)
c
8
(u
17
+ 6u
15
+ ··· + 2u + 1)(u
17
+ 14u
15
+ ··· + 664u 161)
c
9
(u
17
+ 2u
16
+ ··· 3u 1)(u
17
+ 6u
16
+ ··· + 7u + 1)
c
10
(u
17
13u
15
+ ··· + 491u 113)(u
17
+ 2u
16
+ ··· + 3u + 1)
c
11
(u
17
6u
15
+ ··· 2u + 1)(u
17
2u
16
+ ··· 7040u 5641)
c
12
(u
17
4u
16
+ ··· + 54780u 10369)(u
17
+ 2u
16
+ ··· 6u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
21y
16
+ ··· + 896y 256)
· (y
17
+ 11y
16
+ ··· + 7175468160y 181063936)
c
2
, c
5
(y
17
+ 15y
16
+ ··· 144y 16)
· (y
17
+ 31y
16
+ ··· 143264y 13456)
c
3
(y
17
16y
16
+ ··· + 32227y 7921)(y
17
+ 4y
16
+ ··· + 7y 1)
c
4
, c
8
(y
17
+ 12y
16
+ ··· 14y 1)(y
17
+ 28y
16
+ ··· + 580966y 25921)
c
6
, c
10
(y
17
26y
16
+ ··· + 68417y 12769)(y
17
6y
16
+ ··· 3y 1)
c
7
(y
17
+ 31y
16
+ ··· + 46y 1)(y
17
+ 31y
16
+ ··· 2y 1)
c
9
(y
17
+ 2y
16
+ ··· + 9y 1)(y
17
+ 2y
16
+ ··· + y 1)
c
11
(y
17
28y
16
+ ··· + 15817138y 31820881)
· (y
17
12y
16
+ ··· 22y 1)
c
12
(y
17
+ 8y
16
+ ··· + 30y 1)
· (y
17
+ 40y
16
+ ··· 105102598y 107516161)
15