12n
0432
(K12n
0432
)
A knot diagram
1
Linearized knot diagam
3 5 9 11 2 10 3 12 7 5 4 8
Solving Sequence
4,9 3,12
8 1 7 11 5 2 6 10
c
3
c
8
c
12
c
7
c
11
c
4
c
2
c
5
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h74u
12
692u
11
+ ··· + 2529b + 2355, 785u
12
3703u
11
+ ··· + 7587a + 387,
u
13
5u
12
+ 15u
11
29u
10
+ 44u
9
54u
8
+ 61u
7
62u
6
+ 65u
5
67u
4
+ 72u
3
57u
2
+ 36u 9i
I
u
2
= hb + u 1, u
4
4u
3
+ 8u
2
+ a 7u + 3, u
5
4u
4
+ 8u
3
7u
2
+ 2u + 1i
I
u
3
= ha
3
a
2
u a
2
+ 3au + b + 2u + 3, a
4
a
3
u + 2a
2
u a
2
+ 4au + 3a + 2, u
2
+ u + 1i
I
u
4
= h−a
3
a
2
u a
2
+ au + b + 2u + 1, a
4
+ a
3
u 2a
2
u a
2
2au a + 2u, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h74u
12
692u
11
+ · · · + 2529b + 2355, 785u
12
3703u
11
+ · · · +
7587a + 387, u
13
5u
12
+ · · · + 36u 9i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
12
=
0.103466u
12
+ 0.488072u
11
+ ··· + 2.94108u 0.0510083
0.0292606u
12
+ 0.273626u
11
+ ··· + 3.67378u 0.931198
a
8
=
0.0726242u
12
+ 0.196652u
11
+ ··· 1.94029u + 0.651246
0.166469u
12
+ 0.622776u
11
+ ··· + 4.26572u 0.653618
a
1
=
0.168051u
12
0.640569u
11
+ ··· 3.47331u + 1.42467
0.0723606u
12
0.397390u
11
+ ··· 4.74733u + 1.77580
a
7
=
0.115724u
12
+ 0.320417u
11
+ ··· 0.866746u 0.193357
0.148675u
12
+ 1.00593u
11
+ ··· + 7.18031u 1.47924
a
11
=
0.0742059u
12
+ 0.214446u
11
+ ··· 0.732701u + 0.880190
0.0292606u
12
+ 0.273626u
11
+ ··· + 3.67378u 0.931198
a
5
=
0.0938447u
12
0.426124u
11
+ ··· 5.20601u + 2.30486
0.166469u
12
+ 0.622776u
11
+ ··· + 3.26572u 0.653618
a
2
=
0.319889u
12
1.34875u
11
+ ··· 4.40214u + 1.44603
0.329775u
12
+ 0.876631u
11
+ ··· 5.21708u + 2.23488
a
6
=
0.628312u
12
2.59628u
11
+ ··· 11.5492u + 3.46856
0.758798u
12
+ 2.67537u
11
+ ··· + 5.17556u 0.747331
a
10
=
0.00237248u
12
0.139976u
11
+ ··· 2.52195u + 0.843416
0.199684u
12
0.774219u
11
+ ··· 4.62515u + 1.51246
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3325
2529
u
12
17666
2529
u
11
+
17227
843
u
10
96773
2529
u
9
+
137357
2529
u
8
17822
281
u
7
+
173059
2529
u
6
170021
2529
u
5
+
175199
2529
u
4
187657
2529
u
3
+
67681
843
u
2
48875
843
u +
9022
281
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
u
12
+ ··· + 4u 1
c
2
, c
5
, c
6
c
9
u
13
+ u
12
+ ··· + 2u 1
c
3
u
13
5u
12
+ ··· + 36u 9
c
4
, c
8
, c
10
c
11
, c
12
u
13
+ 8u
11
+ ··· u 1
c
7
u
13
u
12
+ ··· + 90u 25
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 35y
12
+ ··· + 212y 1
c
2
, c
5
, c
6
c
9
y
13
y
12
+ ··· + 4y 1
c
3
y
13
+ 5y
12
+ ··· + 270y 81
c
4
, c
8
, c
10
c
11
, c
12
y
13
+ 16y
12
+ ··· 5y 1
c
7
y
13
7y
12
+ ··· + 3150y 625
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.377421 + 0.995561I
a = 1.42395 + 0.27192I
b = 0.26672 + 1.52025I
13.25130 + 1.59234I 1.196156 0.103558I
u = 0.377421 0.995561I
a = 1.42395 0.27192I
b = 0.26672 1.52025I
13.25130 1.59234I 1.196156 + 0.103558I
u = 0.826366 + 0.684268I
a = 0.040776 + 0.277567I
b = 0.156234 0.257273I
1.74296 2.47632I 11.79558 + 3.97407I
u = 0.826366 0.684268I
a = 0.040776 0.277567I
b = 0.156234 + 0.257273I
1.74296 + 2.47632I 11.79558 3.97407I
u = 0.261323 + 1.190470I
a = 0.753030 + 0.372533I
b = 0.246705 0.993811I
5.78672 1.79985I 0.24328 + 2.30841I
u = 0.261323 1.190470I
a = 0.753030 0.372533I
b = 0.246705 + 0.993811I
5.78672 + 1.79985I 0.24328 2.30841I
u = 1.197260 + 0.637614I
a = 0.000701 + 1.040290I
b = 0.662461 + 1.245930I
3.92798 4.17113I 7.23672 + 2.38066I
u = 1.197260 0.637614I
a = 0.000701 1.040290I
b = 0.662461 1.245930I
3.92798 + 4.17113I 7.23672 2.38066I
u = 0.80433 + 1.22011I
a = 1.250130 + 0.103984I
b = 0.87865 + 1.60894I
1.94166 + 11.33090I 6.29855 5.31818I
u = 0.80433 1.22011I
a = 1.250130 0.103984I
b = 0.87865 1.60894I
1.94166 11.33090I 6.29855 + 5.31818I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.425591
a = 0.763681
b = 0.325016
0.561978 17.8790
u = 0.99588 + 1.33587I
a = 0.762815 0.387161I
b = 0.24248 1.40459I
8.39874 + 4.39673I 4.68261 + 1.52874I
u = 0.99588 1.33587I
a = 0.762815 + 0.387161I
b = 0.24248 + 1.40459I
8.39874 4.39673I 4.68261 1.52874I
6
II.
I
u
2
= hb + u 1, u
4
4u
3
+ 8u
2
+ a 7u + 3, u
5
4u
4
+ 8u
3
7u
2
+ 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
12
=
u
4
+ 4u
3
8u
2
+ 7u 3
u + 1
a
8
=
u
4
4u
3
+ 8u
2
8u + 4
u
2
+ 3u 1
a
1
=
2u
4
+ 8u
3
17u
2
+ 17u 8
u
3
+ 4u
2
5u + 2
a
7
=
u
4
5u
3
+ 11u
2
12u + 5
u
4
+ 4u
3
7u
2
+ 5u
a
11
=
u
4
+ 4u
3
8u
2
+ 8u 4
u + 1
a
5
=
u
4
4u
3
+ 9u
2
10u + 6
u
2
+ 2u 1
a
2
=
3u
4
+ 12u
3
25u
2
+ 24u 10
u
3
+ 4u
2
4u + 2
a
6
=
6u
4
26u
3
+ 56u
2
58u + 27
2u
4
+ 8u
3
15u
2
+ 13u 4
a
10
=
2u
4
+ 9u
3
20u
2
+ 22u 11
u
3
+ 3u
2
4u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
3u
3
+ 4u
2
8u + 5
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
+ 2u
4
7u
3
+ 8u
2
4u + 1
c
2
, c
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 1
c
3
u
5
4u
4
+ 8u
3
7u
2
+ 2u + 1
c
4
, c
12
u
5
u
4
+ 2u
3
3u
2
+ u 1
c
5
, c
9
u
5
2u
4
+ u
3
2u
2
1
c
7
u
5
2u
3
3u
2
4u 3
c
8
, c
10
, c
11
u
5
+ u
4
+ 2u
3
+ 3u
2
+ u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
18y
4
+ 9y
3
12y
2
1
c
2
, c
5
, c
6
c
9
y
5
2y
4
7y
3
8y
2
4y 1
c
3
y
5
+ 12y
3
9y
2
+ 18y 1
c
4
, c
8
, c
10
c
11
, c
12
y
5
+ 3y
4
7y
2
5y 1
c
7
y
5
4y
4
4y
3
+ 7y
2
2y 9
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.917062 + 0.638199I
a = 0.265352 0.511254I
b = 0.082938 0.638199I
2.41512 + 2.46056I 0.73583 3.45885I
u = 0.917062 0.638199I
a = 0.265352 + 0.511254I
b = 0.082938 + 0.638199I
2.41512 2.46056I 0.73583 + 3.45885I
u = 0.238871
a = 5.18635
b = 1.23887
5.64999 7.18340
u = 1.20237 + 1.38128I
a = 0.641472 0.411875I
b = 0.202374 1.381280I
8.63454 + 4.90423I 1.85585 10.90056I
u = 1.20237 1.38128I
a = 0.641472 + 0.411875I
b = 0.202374 + 1.381280I
8.63454 4.90423I 1.85585 + 10.90056I
10
III. I
u
3
=
ha
3
a
2
ua
2
+3au+b+2u+3, a
4
a
3
u+2a
2
ua
2
+4au+3a+2, u
2
+u+1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
3
=
1
u 1
a
12
=
a
a
3
+ a
2
u + a
2
3au 2u 3
a
8
=
a
2
u
a
3
u a
2
+ 2au + 2a u
a
1
=
a
3
u a
3
+ a
a
3
u au 2a 1
a
7
=
a
3
u a
2
u 2au 2a + u
a
3
u + a
3
a
2
+ 4au + 2a u + 1
a
11
=
a
3
a
2
u a
2
+ 3au + a + 2u + 3
a
3
+ a
2
u + a
2
3au 2u 3
a
5
=
a
3
u + a
2
u + 2au + 2a
a
3
u a
3
+ a
2
4au 2a 1
a
2
=
a
3
u a
3
+ 2a + 1
a
3
u 2au 3a u 2
a
6
=
a
3
u a
3
+ a
2
u au + 2a 2u 1
2a
3
u + a
3
a
2
u + a
2
3au 6a + 3u 1
a
10
=
a
3
u + a
2
3au 3a + 2u 1
a
3
u + a
3
2a
2
u a
2
+ au 2a + 2u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 9
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
7u
7
+ 18u
6
20u
5
+ 11u
4
5u
3
+ 3u
2
+ 2u + 1
c
2
, c
6
u
8
u
7
+ 4u
6
2u
5
+ 3u
4
u
3
+ u
2
2u + 1
c
3
(u
2
+ u + 1)
4
c
4
, c
12
u
8
+ u
7
+ 6u
6
+ 6u
5
+ 12u
4
+ 13u
3
+ 11u
2
+ 10u + 4
c
5
, c
9
u
8
+ u
7
+ 4u
6
+ 2u
5
+ 3u
4
+ u
3
+ u
2
+ 2u + 1
c
7
u
8
5u
7
+ 19u
6
45u
5
+ 76u
4
100u
3
+ 99u
2
60u + 16
c
8
, c
10
, c
11
u
8
u
7
+ 6u
6
6u
5
+ 12u
4
13u
3
+ 11u
2
10u + 4
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
13y
7
+ 66y
6
68y
5
+ 59y
4
+ 157y
3
+ 51y
2
+ 2y + 1
c
2
, c
5
, c
6
c
9
y
8
+ 7y
7
+ 18y
6
+ 20y
5
+ 11y
4
+ 5y
3
+ 3y
2
2y + 1
c
3
(y
2
+ y + 1)
4
c
4
, c
8
, c
10
c
11
, c
12
y
8
+ 11y
7
+ 48y
6
+ 104y
5
+ 108y
4
+ 23y
3
43y
2
12y + 16
c
7
y
8
+ 13y
7
+ 63y
6
+ 61y
5
30y
4
+ 256y
3
+ 233y
2
432y + 256
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.008180 + 0.726793I
b = 0.683684 0.164757I
4.27683 2.02988I 7.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.271040 + 0.252871I
b = 0.10751 + 1.76242I
12.17250 2.02988I 7.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.199158 + 0.674466I
b = 0.125333 1.236500I
4.27683 2.02988I 7.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.58005 0.78810I
b = 0.416526 1.227190I
12.17250 2.02988I 7.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.008180 0.726793I
b = 0.683684 + 0.164757I
4.27683 + 2.02988I 7.00000 3.46410I
u = 0.500000 0.866025I
a = 1.271040 0.252871I
b = 0.10751 1.76242I
12.17250 + 2.02988I 7.00000 3.46410I
u = 0.500000 0.866025I
a = 0.199158 0.674466I
b = 0.125333 + 1.236500I
4.27683 + 2.02988I 7.00000 3.46410I
u = 0.500000 0.866025I
a = 1.58005 + 0.78810I
b = 0.416526 + 1.227190I
12.17250 + 2.02988I 7.00000 3.46410I
14
IV. I
u
4
=
h−a
3
a
2
ua
2
+au+b+2u+1, a
4
+a
3
u2a
2
ua
2
2aua+2u, u
2
+u+1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
3
=
1
u 1
a
12
=
a
a
3
+ a
2
u + a
2
au 2u 1
a
8
=
a
2
u
a
3
u + a
2
u 2
a
1
=
a
3
u a
3
+ a
a
3
u + 2a
2
au 2u 3
a
7
=
a
3
u a
2
u 2a
2
+ u + 2
a
3
u + a
3
+ 2a
2
u + 3a
2
3u 3
a
11
=
a
3
a
2
u a
2
+ au + a + 2u + 1
a
3
+ a
2
u + a
2
au 2u 1
a
5
=
a
3
u + a
2
u + 2a
2
2u 2
a
3
u a
3
2a
2
u 3a
2
+ 4u + 3
a
2
=
a
3
u a
3
2a
2
+ 2u + 3
a
3
u + 2a
3
+ 2a
2
u + 4a
2
+ a 5u 4
a
6
=
3a
3
u + a
3
+ 5a
2
u + 8a
2
au + 2a 8u 7
4a
3
u 5a
3
9a
2
u 13a
2
+ au 2a + 15u + 11
a
10
=
a
3
u 2a
3
2a
2
u 3a
2
+ au + a + 4u + 3
a
3
u + 3a
3
+ 4a
2
u + 5a
2
au 6u 4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 9
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
17u
7
+ 102u
6
212u
5
177u
4
+ 949u
3
+ 83u
2
594u + 361
c
2
, c
5
, c
6
c
9
u
8
+ u
7
8u
6
12u
5
+ 7u
4
+ 23u
3
+ 45u
2
+ 48u + 19
c
3
(u
2
+ u + 1)
4
c
4
, c
8
, c
10
c
11
, c
12
u
8
u
7
2u
6
+ 4u
4
+ u
3
+ 3u
2
+ 6u + 4
c
7
u
8
3u
7
3u
6
+ 5u
5
+ 34u
4
12u
3
+ 7u
2
8u + 4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
85y
7
+ ··· 292910y + 130321
c
2
, c
5
, c
6
c
9
y
8
17y
7
+ 102y
6
212y
5
177y
4
+ 949y
3
+ 83y
2
594y + 361
c
3
(y
2
+ y + 1)
4
c
4
, c
8
, c
10
c
11
, c
12
y
8
5y
7
+ 12y
6
8y
5
+ 24y
4
+ 7y
3
+ 29y
2
12y + 16
c
7
y
8
15y
7
+ 107y
6
287y
5
+ 1194y
4
+ 388y
3
+ 129y
2
8y + 16
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.038240 + 0.127249I
b = 0.717935 + 0.427530I
2.30291 2.02988I 7.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.729219 + 0.407985I
b = 0.408918 0.962763I
2.30291 2.02988I 7.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.172410 + 0.406591I
b = 1.74734 + 0.58922I
5.59278 2.02988I 7.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.36339 1.80785I
b = 0.938321 + 0.812037I
5.59278 2.02988I 7.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.038240 0.127249I
b = 0.717935 0.427530I
2.30291 + 2.02988I 7.00000 3.46410I
u = 0.500000 0.866025I
a = 0.729219 0.407985I
b = 0.408918 + 0.962763I
2.30291 + 2.02988I 7.00000 3.46410I
u = 0.500000 0.866025I
a = 1.172410 0.406591I
b = 1.74734 0.58922I
5.59278 + 2.02988I 7.00000 3.46410I
u = 0.500000 0.866025I
a = 0.36339 + 1.80785I
b = 0.938321 0.812037I
5.59278 + 2.02988I 7.00000 3.46410I
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 2u
4
7u
3
+ 8u
2
4u + 1)
· (u
8
17u
7
+ 102u
6
212u
5
177u
4
+ 949u
3
+ 83u
2
594u + 361)
· (u
8
7u
7
+ 18u
6
20u
5
+ 11u
4
5u
3
+ 3u
2
+ 2u + 1)
· (u
13
u
12
+ ··· + 4u 1)
c
2
, c
6
(u
5
+ 2u
4
+ u
3
+ 2u
2
+ 1)(u
8
u
7
+ ··· 2u + 1)
· (u
8
+ u
7
8u
6
12u
5
+ 7u
4
+ 23u
3
+ 45u
2
+ 48u + 19)
· (u
13
+ u
12
+ ··· + 2u 1)
c
3
(u
2
+ u + 1)
8
(u
5
4u
4
+ 8u
3
7u
2
+ 2u + 1)
· (u
13
5u
12
+ ··· + 36u 9)
c
4
, c
12
(u
5
u
4
+ 2u
3
3u
2
+ u 1)(u
8
u
7
+ ··· + 6u + 4)
· (u
8
+ u
7
+ 6u
6
+ 6u
5
+ 12u
4
+ 13u
3
+ 11u
2
+ 10u + 4)
· (u
13
+ 8u
11
+ ··· u 1)
c
5
, c
9
(u
5
2u
4
+ u
3
2u
2
1)
· (u
8
+ u
7
8u
6
12u
5
+ 7u
4
+ 23u
3
+ 45u
2
+ 48u + 19)
· (u
8
+ u
7
+ ··· + 2u + 1)(u
13
+ u
12
+ ··· + 2u 1)
c
7
(u
5
2u
3
3u
2
4u 3)
· (u
8
5u
7
+ 19u
6
45u
5
+ 76u
4
100u
3
+ 99u
2
60u + 16)
· (u
8
3u
7
3u
6
+ 5u
5
+ 34u
4
12u
3
+ 7u
2
8u + 4)
· (u
13
u
12
+ ··· + 90u 25)
c
8
, c
10
, c
11
(u
5
+ u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
8
u
7
+ ··· + 6u + 4)
· (u
8
u
7
+ 6u
6
6u
5
+ 12u
4
13u
3
+ 11u
2
10u + 4)
· (u
13
+ 8u
11
+ ··· u 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
5
18y
4
+ 9y
3
12y
2
1)(y
8
85y
7
+ ··· 292910y + 130321)
· (y
8
13y
7
+ 66y
6
68y
5
+ 59y
4
+ 157y
3
+ 51y
2
+ 2y + 1)
· (y
13
+ 35y
12
+ ··· + 212y 1)
c
2
, c
5
, c
6
c
9
(y
5
2y
4
7y
3
8y
2
4y 1)
· (y
8
17y
7
+ 102y
6
212y
5
177y
4
+ 949y
3
+ 83y
2
594y + 361)
· (y
8
+ 7y
7
+ 18y
6
+ 20y
5
+ 11y
4
+ 5y
3
+ 3y
2
2y + 1)
· (y
13
y
12
+ ··· + 4y 1)
c
3
((y
2
+ y + 1)
8
)(y
5
+ 12y
3
+ ··· + 18y 1)(y
13
+ 5y
12
+ ··· + 270y 81)
c
4
, c
8
, c
10
c
11
, c
12
(y
5
+ 3y
4
7y
2
5y 1)
· (y
8
5y
7
+ 12y
6
8y
5
+ 24y
4
+ 7y
3
+ 29y
2
12y + 16)
· (y
8
+ 11y
7
+ 48y
6
+ 104y
5
+ 108y
4
+ 23y
3
43y
2
12y + 16)
· (y
13
+ 16y
12
+ ··· 5y 1)
c
7
(y
5
4y
4
4y
3
+ 7y
2
2y 9)
· (y
8
15y
7
+ 107y
6
287y
5
+ 1194y
4
+ 388y
3
+ 129y
2
8y + 16)
· (y
8
+ 13y
7
+ 63y
6
+ 61y
5
30y
4
+ 256y
3
+ 233y
2
432y + 256)
· (y
13
7y
12
+ ··· + 3150y 625)
20