12n
0438
(K12n
0438
)
A knot diagram
1
Linearized knot diagam
3 6 12 10 2 4 11 3 6 7 8 9
Solving Sequence
3,8 9,11
12 4 1 7 6 2 5 10
c
8
c
11
c
3
c
12
c
7
c
6
c
2
c
5
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h9586u
11
3055u
10
+ ··· + 9038b 18587, 55772u
11
+ 21076u
10
+ ··· + 4519a + 136449,
u
12
+ 9u
10
+ u
9
+ 13u
8
+ 3u
7
37u
6
8u
5
u
4
+ 13u
3
+ 7u
2
2u 1i
I
u
2
= h23u
7
19u
6
+ 114u
5
105u
4
+ 47u
3
42u
2
+ 83b 10u 77,
67u
7
77u
6
+ 379u
5
443u
4
+ 422u
3
310u
2
+ 83a + 191u 347, u
8
+ 6u
6
+ 8u
4
+ 3u
3
+ 7u
2
+ u + 1i
I
u
3
= h220741u
11
+ 352170u
10
+ ··· + 4894159b + 8758441,
6799412u
11
+ 191458u
10
+ ··· + 4894159a + 38864844,
u
12
+ 13u
10
u
9
+ 61u
8
7u
7
+ 121u
6
12u
5
+ 96u
4
21u
3
+ 34u
2
5u + 1i
I
u
4
= h−u
2
+ b + u 1, u
3
+ u
2
+ a 2u + 2, u
4
2u
3
+ 3u
2
2u 1i
I
u
5
= hb, a + u, u
2
+ u + 1i
* 5 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h9586u
11
3055u
10
+ · · · + 9038b 18587, 55772u
11
+ 21076u
10
+
· · · + 4519a + 136449, u
12
+ 9u
10
+ · · · 2u 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
12.3417u
11
4.66386u
10
+ ··· + 18.7431u 30.1945
1.06063u
11
+ 0.338017u
10
+ ··· 1.12669u + 2.05654
a
12
=
13.4023u
11
5.00188u
10
+ ··· + 19.8698u 32.2511
1.06063u
11
+ 0.338017u
10
+ ··· 1.12669u + 2.05654
a
4
=
7.52003u
11
+ 3.05964u
10
+ ··· 7.40042u + 16.9010
3.22129u
11
+ 1.14240u
10
+ ··· 3.67039u + 7.94722
a
1
=
14.4826u
11
5.40407u
10
+ ··· + 22.1416u 35.1964
1.23069u
11
+ 0.347201u
10
+ ··· 1.40263u + 2.45873
a
7
=
6.68843u
11
2.59150u
10
+ ··· + 10.4001u 16.2423
1.25880u
11
+ 0.629785u
10
+ ··· 1.01427u + 3.32253
a
6
=
7.16254u
11
+ 2.94534u
10
+ ··· 8.99015u + 20.2930
u
a
2
=
14.4826u
11
5.40407u
10
+ ··· + 22.1416u 35.1964
1.08033u
11
0.402191u
10
+ ··· + 2.27185u 2.94534
a
5
=
10.9114u
11
4.21122u
10
+ ··· + 11.3468u 25.2504
3.39135u
11
1.15158u
10
+ ··· + 3.94634u 8.34941
a
10
=
8.34941u
11
3.39135u
10
+ ··· + 12.1990u 20.6452
0.402191u
11
0.170060u
10
+ ··· + 0.784687u 1.08033
(ii) Obstruction class = 1
(iii) Cusp Shapes =
37615
9038
u
11
13351
4519
u
10
+
172836
4519
u
9
209101
9038
u
8
+
263227
4519
u
7
290229
9038
u
6
1386017
9038
u
5
+
583207
9038
u
4
56976
4519
u
3
+
639833
9038
u
2
58931
9038
u
151555
9038
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 37u
11
+ ··· + 6273u + 64
c
2
, c
5
u
12
+ 9u
11
+ ··· 57u + 8
c
3
, c
6
u
12
2u
11
+ ··· 3u 1
c
4
, c
8
u
12
+ 9u
10
u
9
+ 13u
8
3u
7
37u
6
+ 8u
5
u
4
13u
3
+ 7u
2
+ 2u 1
c
7
, c
10
, c
11
u
12
+ 6u
11
+ ··· + 7u 2
c
9
, c
12
u
12
+ u
11
+ ··· + 36u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
233y
11
+ ··· 38719361y + 4096
c
2
, c
5
y
12
37y
11
+ ··· 6273y + 64
c
3
, c
6
y
12
6y
11
+ ··· + y + 1
c
4
, c
8
y
12
+ 18y
11
+ ··· 18y + 1
c
7
, c
10
, c
11
y
12
12y
11
+ ··· 109y + 4
c
9
, c
12
y
12
+ 45y
11
+ ··· 670y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.04860
a = 3.26000
b = 1.86936
8.03214 11.1250
u = 1.19673
a = 0.457184
b = 1.40652
6.56513 13.9820
u = 0.785212
a = 0.538255
b = 1.39001
3.33445 1.37130
u = 0.237929 + 0.713496I
a = 0.839776 + 0.248914I
b = 0.549193 + 0.617015I
0.28261 1.48442I 3.85780 + 2.07743I
u = 0.237929 0.713496I
a = 0.839776 0.248914I
b = 0.549193 0.617015I
0.28261 + 1.48442I 3.85780 2.07743I
u = 0.413934
a = 1.40772
b = 0.208689
1.36886 8.24790
u = 0.398984 + 0.012900I
a = 1.37647 2.67835I
b = 0.666632 + 0.239214I
1.97549 2.44144I 0.80466 1.29895I
u = 0.398984 0.012900I
a = 1.37647 + 2.67835I
b = 0.666632 0.239214I
1.97549 + 2.44144I 0.80466 + 1.29895I
u = 0.05938 + 2.26410I
a = 1.045270 0.699289I
b = 0.85675 1.28813I
15.6479 4.2966I 9.24517 + 3.48018I
u = 0.05938 2.26410I
a = 1.045270 + 0.699289I
b = 0.85675 + 1.28813I
15.6479 + 4.2966I 9.24517 3.48018I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.17079 + 2.29628I
a = 2.25039 + 0.29367I
b = 1.74558 0.39261I
15.3806 + 10.5658I 8.83901 3.88482I
u = 0.17079 2.29628I
a = 2.25039 0.29367I
b = 1.74558 + 0.39261I
15.3806 10.5658I 8.83901 + 3.88482I
6
II. I
u
2
= h23u
7
19u
6
+ · · · + 83b 77, 67u
7
77u
6
+ · · · + 83a 347, u
8
+
6u
6
+ 8u
4
+ 3u
3
+ 7u
2
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
0.807229u
7
+ 0.927711u
6
+ ··· 2.30120u + 4.18072
0.277108u
7
+ 0.228916u
6
+ ··· + 0.120482u + 0.927711
a
12
=
0.530120u
7
+ 0.698795u
6
+ ··· 2.42169u + 3.25301
0.277108u
7
+ 0.228916u
6
+ ··· + 0.120482u + 0.927711
a
4
=
1.74699u
7
0.469880u
6
+ ··· 10.4578u 3.32530
0.301205u
7
0.0120482u
6
+ ··· 2.21687u 0.469880
a
1
=
0.819277u
7
+ 0.807229u
6
+ ··· 2.46988u + 3.48193
0.361446u
7
+ 0.385542u
6
+ ··· 0.0602410u + 1.03614
a
7
=
0.542169u
7
0.578313u
6
+ ··· + 1.59036u 2.55422
0.0722892u
7
0.277108u
6
+ ··· + 0.0120482u 0.807229
a
6
=
1.27711u
7
+ 0.228916u
6
+ ··· 6.87952u + 0.927711
u
a
2
=
0.819277u
7
+ 0.807229u
6
+ ··· 2.46988u + 3.48193
0.289157u
7
+ 0.108434u
6
+ ··· 0.0481928u + 0.228916
a
5
=
1.96386u
7
0.638554u
6
+ ··· 12.4940u 3.90361
0.216867u
7
0.168675u
6
+ ··· 2.03614u 0.578313
a
10
=
0.578313u
7
+ 0.216867u
6
+ ··· 2.09639u + 1.45783
0.108434u
7
0.0843373u
6
+ ··· 0.518072u 0.289157
(ii) Obstruction class = 1
(iii) Cusp Shapes =
277
83
u
7
+
114
83
u
6
+
1640
83
u
5
+
547
83
u
4
+
2042
83
u
3
+
999
83
u
2
+
2052
83
u
285
83
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
8u
7
+ 18u
6
9u
5
+ 31u
4
+ 18u
3
+ 14u
2
+ 3u + 1
c
2
u
8
+ 6u
7
+ 14u
6
+ 17u
5
+ 13u
4
+ 8u
3
+ 6u
2
+ 3u + 1
c
3
, c
6
u
8
+ 2u
7
+ 2u
6
2u
4
3u
3
+ 2u + 1
c
4
, c
8
u
8
+ 6u
6
+ 8u
4
+ 3u
3
+ 7u
2
+ u + 1
c
5
u
8
6u
7
+ 14u
6
17u
5
+ 13u
4
8u
3
+ 6u
2
3u + 1
c
7
u
8
+ 3u
7
+ u
6
3u
5
+ u
3
4u
2
u + 3
c
9
, c
12
u
8
u
7
+ 8u
6
u
5
+ 14u
4
+ 5u
3
+ 7u
2
+ 5u + 1
c
10
, c
11
u
8
3u
7
+ u
6
+ 3u
5
u
3
4u
2
+ u + 3
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
28y
7
+ 242y
6
+ 1351y
5
+ 1839y
4
+ 634y
3
+ 150y
2
+ 19y + 1
c
2
, c
5
y
8
8y
7
+ 18y
6
9y
5
+ 31y
4
+ 18y
3
+ 14y
2
+ 3y + 1
c
3
, c
6
y
8
+ 4y
5
2y
4
5y
3
+ 8y
2
4y + 1
c
4
, c
8
y
8
+ 12y
7
+ 52y
6
+ 110y
5
+ 150y
4
+ 115y
3
+ 59y
2
+ 13y + 1
c
7
, c
10
, c
11
y
8
7y
7
+ 19y
6
23y
5
+ 10y
4
y
3
+ 18y
2
25y + 9
c
9
, c
12
y
8
+ 15y
7
+ 90y
6
+ 247y
5
+ 330y
4
+ 197y
3
+ 27y
2
11y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.452128 + 0.754240I
a = 0.281547 + 0.149763I
b = 0.364928 + 0.928632I
0.91626 2.11958I 9.09548 + 6.29610I
u = 0.452128 0.754240I
a = 0.281547 0.149763I
b = 0.364928 0.928632I
0.91626 + 2.11958I 9.09548 6.29610I
u = 0.588231 + 1.086850I
a = 1.70900 0.76306I
b = 1.56785 + 0.26923I
7.73259 + 6.48719I 6.82312 5.90005I
u = 0.588231 1.086850I
a = 1.70900 + 0.76306I
b = 1.56785 0.26923I
7.73259 6.48719I 6.82312 + 5.90005I
u = 0.051535 + 0.424185I
a = 3.68516 0.74169I
b = 0.862997 + 0.073353I
1.63676 2.95067I 6.12574 + 8.48868I
u = 0.051535 0.424185I
a = 3.68516 + 0.74169I
b = 0.862997 0.073353I
1.63676 + 2.95067I 6.12574 8.48868I
u = 0.08457 + 2.15179I
a = 1.257710 0.086043I
b = 1.160080 0.491572I
14.3720 2.0722I 9.45567 + 2.68473I
u = 0.08457 2.15179I
a = 1.257710 + 0.086043I
b = 1.160080 + 0.491572I
14.3720 + 2.0722I 9.45567 2.68473I
10
III.
I
u
3
= h2.21 × 10
5
u
11
+ 3.52 × 10
5
u
10
+ · · · + 4.89 × 10
6
b + 8.76 × 10
6
, 6.80 ×
10
6
u
11
+1.91×10
5
u
10
+· · ·+4.89×10
6
a+3.89×10
7
, u
12
+13u
10
+· · ·5u+1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
1.38929u
11
0.0391197u
10
+ ··· + 43.9779u 7.94107
0.0451029u
11
0.0719572u
10
+ ··· 0.177550u 1.78957
a
12
=
1.43439u
11
+ 0.0328375u
10
+ ··· + 44.1554u 6.15150
0.0451029u
11
0.0719572u
10
+ ··· 0.177550u 1.78957
a
4
=
1.86149u
11
+ 0.0277566u
10
+ ··· + 56.7778u 7.54448
0.0255782u
11
0.108973u
10
+ ··· + 1.02646u 2.23971
a
1
=
1.35518u
11
0.0779405u
10
+ ··· + 42.7077u 7.97390
0.0413761u
11
0.131233u
10
+ ··· + 0.297122u 1.90035
a
7
=
2.16779u
11
0.0984377u
10
+ ··· + 66.0594u 12.7530
0.0719229u
11
0.0728595u
10
+ ··· 2.91466u 2.58092
a
6
=
0.740548u
11
+ 0.241490u
10
+ ··· + 20.0889u + 4.36298
0.434394u
11
+ 0.0328375u
10
+ ··· + 11.1554u 1.15150
a
2
=
1.35518u
11
0.0779405u
10
+ ··· + 42.7077u 7.97390
0.0792181u
11
0.110778u
10
+ ··· 1.44776u 1.82241
a
5
=
2.02148u
11
+ 0.591926u
10
+ ··· + 56.7443u + 8.63238
0.902855u
11
+ 0.0689238u
10
+ ··· + 24.8073u 2.82600
a
10
=
1.74447u
11
+ 0.117060u
10
+ ··· 53.6856u + 13.9150
0.286593u
11
+ 0.0646620u
10
+ ··· + 8.24327u + 2.04902
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1038229
4894159
u
11
453029
4894159
u
10
+ ··· +
62859079
4894159
u
46129032
4894159
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 8u
5
53u
3
+ 58u
2
15u + 9)
2
c
2
, c
5
(u
6
4u
5
+ 4u
4
3u
3
+ 4u
2
+ 3u + 3)
2
c
3
, c
6
u
12
4u
11
+ ··· + u + 1
c
4
, c
8
u
12
+ 13u
10
+ ··· + 5u + 1
c
7
, c
10
, c
11
(u
6
u
5
4u
4
+ 3u
3
+ 4u
2
2)
2
c
9
, c
12
u
12
3u
11
+ ··· 8u + 173
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
64y
5
+ 964y
4
2551y
3
+ 1774y
2
+ 819y + 81)
2
c
2
, c
5
(y
6
8y
5
+ 53y
3
+ 58y
2
+ 15y + 9)
2
c
3
, c
6
y
12
2y
11
+ ··· + 23y + 1
c
4
, c
8
y
12
+ 26y
11
+ ··· + 43y + 1
c
7
, c
10
, c
11
(y
6
9y
5
+ 30y
4
45y
3
+ 32y
2
16y + 4)
2
c
9
, c
12
y
12
+ 29y
11
+ ··· + 170514y + 29929
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.374731 + 0.890342I
a = 1.185720 0.141464I
b = 0.629305 + 0.469465I
0.31318 1.57342I 5.93222 + 3.43140I
u = 0.374731 0.890342I
a = 1.185720 + 0.141464I
b = 0.629305 0.469465I
0.31318 + 1.57342I 5.93222 3.43140I
u = 0.219901 + 0.674731I
a = 0.347492 + 0.244157I
b = 0.629305 + 0.469465I
0.31318 1.57342I 5.93222 + 3.43140I
u = 0.219901 0.674731I
a = 0.347492 0.244157I
b = 0.629305 0.469465I
0.31318 + 1.57342I 5.93222 3.43140I
u = 0.32643 + 1.59597I
a = 2.15982 0.63392I
b = 1.63022 + 0.19616I
8.12771 + 4.22943I 8.28340 1.79030I
u = 0.32643 1.59597I
a = 2.15982 + 0.63392I
b = 1.63022 0.19616I
8.12771 4.22943I 8.28340 + 1.79030I
u = 0.080159 + 0.164473I
a = 4.43127 + 6.14837I
b = 1.63022 0.19616I
8.12771 4.22943I 8.28340 + 1.79030I
u = 0.080159 0.164473I
a = 4.43127 6.14837I
b = 1.63022 + 0.19616I
8.12771 + 4.22943I 8.28340 1.79030I
u = 0.37385 + 2.16844I
a = 2.53178 + 0.44785I
b = 1.70687
16.3722 8.87611 + 0.I
u = 0.37385 2.16844I
a = 2.53178 0.44785I
b = 1.70687
16.3722 8.87611 + 0.I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.12209 + 2.22085I
a = 0.973901 + 0.448921I
b = 0.705047
14.2948 8.69265 + 0.I
u = 0.12209 2.22085I
a = 0.973901 0.448921I
b = 0.705047
14.2948 8.69265 + 0.I
15
IV. I
u
4
= h−u
2
+ b + u 1, u
3
+ u
2
+ a 2u + 2, u
4
2u
3
+ 3u
2
2u 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
11
=
u
3
u
2
+ 2u 2
u
2
u + 1
a
12
=
u
3
2u
2
+ 3u 3
u
2
u + 1
a
4
=
u
3
+ 2u
2
4u + 4
u
3
2u
2
+ 3u 1
a
1
=
u
3
2u
2
+ 3u 2
u + 1
a
7
=
u
3
+ 3u
2
5u + 3
2
a
6
=
u
3
+ 2u
2
3u + 2
u 1
a
2
=
u
3
2u
2
+ 3u 2
1
a
5
=
0
u
a
10
=
u
3
+ 2u
2
3u + 3
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
6
u
4
+ 2u
3
+ 3u
2
+ 2u 1
c
4
, c
8
u
4
2u
3
+ 3u
2
2u 1
c
5
, c
9
, c
12
(u + 1)
4
c
7
, c
10
, c
11
(u
2
2)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
9
, c
12
(y 1)
4
c
3
, c
4
, c
6
c
8
y
4
+ 2y
3
y
2
10y + 1
c
7
, c
10
, c
11
(y 2)
4
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.31499
a = 1.17467
b = 1.41421
4.93480 8.00000
u = 0.50000 + 1.47113I
a = 2.20711 0.60936I
b = 1.41421
4.93480 8.00000
u = 0.50000 1.47113I
a = 2.20711 + 0.60936I
b = 1.41421
4.93480 8.00000
u = 0.314993
a = 2.76046
b = 1.41421
4.93480 8.00000
19
V. I
u
5
= hb, a + u, u
2
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u + 1
a
11
=
u
0
a
12
=
u
0
a
4
=
1
u
a
1
=
u 1
u 1
a
7
=
1
0
a
6
=
u + 1
u + 1
a
2
=
u 1
1
a
5
=
0
u
a
10
=
u
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
9
c
12
(u 1)
2
c
3
, c
4
, c
6
c
8
u
2
+ u + 1
c
5
(u + 1)
2
c
7
, c
10
, c
11
u
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
9
, c
12
(y 1)
2
c
3
, c
4
, c
6
c
8
y
2
+ y + 1
c
7
, c
10
, c
11
y
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0
0 6.00000
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0
0 6.00000
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
(u
6
+ 8u
5
53u
3
+ 58u
2
15u + 9)
2
· (u
8
8u
7
+ 18u
6
9u
5
+ 31u
4
+ 18u
3
+ 14u
2
+ 3u + 1)
· (u
12
+ 37u
11
+ ··· + 6273u + 64)
c
2
(u 1)
6
(u
6
4u
5
+ 4u
4
3u
3
+ 4u
2
+ 3u + 3)
2
· (u
8
+ 6u
7
+ 14u
6
+ 17u
5
+ 13u
4
+ 8u
3
+ 6u
2
+ 3u + 1)
· (u
12
+ 9u
11
+ ··· 57u + 8)
c
3
, c
6
(u
2
+ u + 1)(u
4
+ 2u
3
+ ··· + 2u 1)(u
8
+ 2u
7
+ ··· + 2u + 1)
· (u
12
4u
11
+ ··· + u + 1)(u
12
2u
11
+ ··· 3u 1)
c
4
, c
8
(u
2
+ u + 1)(u
4
2u
3
+ ··· 2u 1)(u
8
+ 6u
6
+ ··· + u + 1)
· (u
12
+ 9u
10
u
9
+ 13u
8
3u
7
37u
6
+ 8u
5
u
4
13u
3
+ 7u
2
+ 2u 1)
· (u
12
+ 13u
10
+ ··· + 5u + 1)
c
5
(u + 1)
6
(u
6
4u
5
+ 4u
4
3u
3
+ 4u
2
+ 3u + 3)
2
· (u
8
6u
7
+ 14u
6
17u
5
+ 13u
4
8u
3
+ 6u
2
3u + 1)
· (u
12
+ 9u
11
+ ··· 57u + 8)
c
7
u
2
(u
2
2)
2
(u
6
u
5
4u
4
+ 3u
3
+ 4u
2
2)
2
· (u
8
+ 3u
7
+ ··· u + 3)(u
12
+ 6u
11
+ ··· + 7u 2)
c
9
, c
12
(u 1)
2
(u + 1)
4
(u
8
u
7
+ 8u
6
u
5
+ 14u
4
+ 5u
3
+ 7u
2
+ 5u + 1)
· (u
12
3u
11
+ ··· 8u + 173)(u
12
+ u
11
+ ··· + 36u + 1)
c
10
, c
11
u
2
(u
2
2)
2
(u
6
u
5
4u
4
+ 3u
3
+ 4u
2
2)
2
· (u
8
3u
7
+ ··· + u + 3)(u
12
+ 6u
11
+ ··· + 7u 2)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
6
(y
6
64y
5
+ 964y
4
2551y
3
+ 1774y
2
+ 819y + 81)
2
· (y
8
28y
7
+ 242y
6
+ 1351y
5
+ 1839y
4
+ 634y
3
+ 150y
2
+ 19y + 1)
· (y
12
233y
11
+ ··· 38719361y + 4096)
c
2
, c
5
(y 1)
6
(y
6
8y
5
+ 53y
3
+ 58y
2
+ 15y + 9)
2
· (y
8
8y
7
+ 18y
6
9y
5
+ 31y
4
+ 18y
3
+ 14y
2
+ 3y + 1)
· (y
12
37y
11
+ ··· 6273y + 64)
c
3
, c
6
(y
2
+ y + 1)(y
4
+ 2y
3
+ ··· 10y + 1)(y
8
+ 4y
5
+ ··· 4y + 1)
· (y
12
6y
11
+ ··· + y + 1)(y
12
2y
11
+ ··· + 23y + 1)
c
4
, c
8
(y
2
+ y + 1)(y
4
+ 2y
3
y
2
10y + 1)
· (y
8
+ 12y
7
+ 52y
6
+ 110y
5
+ 150y
4
+ 115y
3
+ 59y
2
+ 13y + 1)
· (y
12
+ 18y
11
+ ··· 18y + 1)(y
12
+ 26y
11
+ ··· + 43y + 1)
c
7
, c
10
, c
11
y
2
(y 2)
4
(y
6
9y
5
+ 30y
4
45y
3
+ 32y
2
16y + 4)
2
· (y
8
7y
7
+ 19y
6
23y
5
+ 10y
4
y
3
+ 18y
2
25y + 9)
· (y
12
12y
11
+ ··· 109y + 4)
c
9
, c
12
(y 1)
6
· (y
8
+ 15y
7
+ 90y
6
+ 247y
5
+ 330y
4
+ 197y
3
+ 27y
2
11y + 1)
· (y
12
+ 29y
11
+ ··· + 170514y + 29929)(y
12
+ 45y
11
+ ··· 670y + 1)
25