12n
0441
(K12n
0441
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 2 9 11 1 5 7 8 4
Solving Sequence
3,8 4,11
12 1 9 7 5 6 2 10
c
3
c
11
c
12
c
8
c
7
c
4
c
6
c
2
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−9309481822991u
25
+ 73829652568183u
24
+ ··· + 260029930933511b + 103914726631843,
469820212829242u
25
103914726631843u
24
+ ··· + 260029930933511a + 3878572919965900,
u
26
+ 11u
24
+ ··· + 9u + 1i
I
u
2
= h−2.76733 × 10
64
u
39
5.89505 × 10
64
u
38
+ ··· + 1.60944 × 10
63
b + 2.15660 × 10
65
,
1.58706 × 10
65
u
39
+ 3.38445 × 10
65
u
38
+ ··· + 1.60944 × 10
63
a 1.20443 × 10
66
, u
40
+ 2u
39
+ ··· 31u + 1i
I
u
3
= h23u
9
+ 7u
8
+ 70u
7
+ 16u
6
+ 102u
5
+ 97u
4
+ 66u
3
+ 55u
2
+ 37b 37u 9,
56u
9
9u
8
201u
7
+ 27u
6
369u
5
56u
4
402u
3
+ 72u
2
+ 37a 37u + 149,
u
10
+ 4u
8
u
7
+ 8u
6
+ 9u
4
u
3
+ 2u
2
2u 1i
I
u
4
= h−9u
7
+ 2u
6
53u
5
+ 24u
4
91u
3
+ 41u
2
+ 13b 62u + 18,
u
7
6u
5
+ 2u
4
10u
3
+ 6u
2
+ a 7u + 4, u
8
+ 6u
6
2u
5
+ 10u
4
6u
3
+ 7u
2
4u + 1i
I
u
5
= hb u + 1, a, u
2
u + 1i
* 5 irreducible components of dim
C
= 0, with total 86 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9.31 × 10
12
u
25
+ 7.38 × 10
13
u
24
+ · · · + 2.60 × 10
14
b + 1.04 ×
10
14
, 4.70 × 10
14
u
25
1.04 × 10
14
u
24
+ · · · + 2.60 × 10
14
a + 3.88 ×
10
15
, u
26
+ 11u
24
+ · · · + 9u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
1.80679u
25
+ 0.399626u
24
+ ··· 40.3048u 14.9159
0.0358016u
25
0.283928u
24
+ ··· 0.789841u 0.399626
a
12
=
1.80679u
25
+ 0.399626u
24
+ ··· 40.3048u 14.9159
0.0716032u
25
0.567855u
24
+ ··· 2.57968u 0.799252
a
1
=
1.77099u
25
+ 0.115699u
24
+ ··· 41.0946u 15.3155
0.169902u
25
0.371239u
24
+ ··· 0.0601367u 0.515325
a
9
=
3.57844u
25
0.00928018u
24
+ ··· + 60.7654u + 24.7620
0.339222u
25
0.587326u
24
+ ··· 7.69123u 0.0242533
a
7
=
3.14858u
25
0.276584u
24
+ ··· 69.8097u 24.6725
0.0250668u
25
+ 0.127352u
24
+ ··· + 4.84799u 0.123042
a
5
=
0.0553456u
25
+ 0.301266u
24
+ ··· 9.68720u 7.23255
0.0310923u
25
+ 0.0379551u
24
+ ··· 1.69626u 0.240398
a
6
=
1.98609u
25
1.47838u
24
+ ··· + 22.3075u + 16.0739
0.0620066u
25
+ 0.275777u
24
+ ··· + 9.47790u + 1.77196
a
2
=
1.60109u
25
+ 0.486937u
24
+ ··· 41.0345u 14.8002
0.169902u
25
0.371239u
24
+ ··· 0.0601367u 0.515325
a
10
=
3.27718u
25
+ 0.178388u
24
+ ··· + 68.4960u + 24.8174
0.301266u
25
0.187668u
24
+ ··· 7.73066u 0.0553456
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
2458339353424590
260029930933511
u
25
+
166778339040524
260029930933511
u
24
+ ··· +
28387935709051593
260029930933511
u +
7983772528255336
260029930933511
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 7u
25
+ ··· + 769u + 16
c
2
, c
5
u
26
+ 7u
25
+ ··· 43u 4
c
3
, c
9
u
26
+ 11u
24
+ ··· + 9u + 1
c
4
, c
12
u
26
+ 2u
25
+ ··· + 11u + 1
c
6
, c
8
u
26
+ u
25
+ ··· u 1
c
7
, c
10
, c
11
u
26
+ 11u
25
+ ··· 23u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
+ 17y
25
+ ··· 418017y + 256
c
2
, c
5
y
26
7y
25
+ ··· 769y + 16
c
3
, c
9
y
26
+ 22y
25
+ ··· 33y + 1
c
4
, c
12
y
26
26y
25
+ ··· 17y + 1
c
6
, c
8
y
26
13y
25
+ ··· 5y + 1
c
7
, c
10
, c
11
y
26
3y
25
+ ··· 89y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.925328 + 0.204781I
a = 0.576015 0.245577I
b = 0.549350 0.213489I
1.185780 0.477506I 8.56678 2.27892I
u = 0.925328 0.204781I
a = 0.576015 + 0.245577I
b = 0.549350 + 0.213489I
1.185780 + 0.477506I 8.56678 + 2.27892I
u = 0.437987 + 0.957320I
a = 1.273680 0.370591I
b = 1.67170 + 0.15777I
4.40116 1.97219I 17.1827 0.9744I
u = 0.437987 0.957320I
a = 1.273680 + 0.370591I
b = 1.67170 0.15777I
4.40116 + 1.97219I 17.1827 + 0.9744I
u = 0.248708 + 1.048740I
a = 0.062948 + 0.711511I
b = 0.187797 + 0.343031I
1.73508 1.89801I 8.55455 + 3.04477I
u = 0.248708 1.048740I
a = 0.062948 0.711511I
b = 0.187797 0.343031I
1.73508 + 1.89801I 8.55455 3.04477I
u = 1.033700 + 0.477780I
a = 0.441315 + 0.395879I
b = 0.271845 + 0.374508I
1.59430 + 2.89984I 9.85116 8.11236I
u = 1.033700 0.477780I
a = 0.441315 0.395879I
b = 0.271845 0.374508I
1.59430 2.89984I 9.85116 + 8.11236I
u = 0.152393 + 0.838106I
a = 0.304017 0.370147I
b = 0.040457 + 1.167170I
1.68902 + 1.74396I 6.90590 3.41950I
u = 0.152393 0.838106I
a = 0.304017 + 0.370147I
b = 0.040457 1.167170I
1.68902 1.74396I 6.90590 + 3.41950I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.157882 + 1.174830I
a = 0.147312 + 0.389022I
b = 0.186083 + 0.702237I
1.75577 1.91027I 7.85130 + 3.44778I
u = 0.157882 1.174830I
a = 0.147312 0.389022I
b = 0.186083 0.702237I
1.75577 + 1.91027I 7.85130 3.44778I
u = 0.041568 + 1.314780I
a = 0.962386 + 0.969307I
b = 1.72636 0.25395I
8.64541 + 0.35254I 5.05913 0.86290I
u = 0.041568 1.314780I
a = 0.962386 0.969307I
b = 1.72636 + 0.25395I
8.64541 0.35254I 5.05913 + 0.86290I
u = 0.091023 + 1.338640I
a = 0.930924 + 0.895385I
b = 1.78763 0.03157I
7.58539 7.09977I 6.01709 + 4.34352I
u = 0.091023 1.338640I
a = 0.930924 0.895385I
b = 1.78763 + 0.03157I
7.58539 + 7.09977I 6.01709 4.34352I
u = 0.689089 + 1.219170I
a = 0.961669 + 0.093949I
b = 1.50398 0.49169I
0.10698 + 7.65731I 11.70226 7.14009I
u = 0.689089 1.219170I
a = 0.961669 0.093949I
b = 1.50398 + 0.49169I
0.10698 7.65731I 11.70226 + 7.14009I
u = 0.486762
a = 1.08934
b = 0.228656
0.765965 12.9500
u = 0.098078 + 0.439549I
a = 0.77333 3.25861I
b = 0.237064 + 1.104460I
5.10383 + 3.18903I 17.4273 3.2712I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.098078 0.439549I
a = 0.77333 + 3.25861I
b = 0.237064 1.104460I
5.10383 3.18903I 17.4273 + 3.2712I
u = 0.50591 + 1.51762I
a = 0.954886 + 0.422620I
b = 1.81183 0.81387I
8.81872 9.45700I 5.57202 + 4.82775I
u = 0.50591 1.51762I
a = 0.954886 0.422620I
b = 1.81183 + 0.81387I
8.81872 + 9.45700I 5.57202 4.82775I
u = 0.55589 + 1.59469I
a = 0.878916 + 0.428177I
b = 1.76028 0.92013I
7.2466 + 15.9916I 8.00000 8.39864I
u = 0.55589 1.59469I
a = 0.878916 0.428177I
b = 1.76028 + 0.92013I
7.2466 15.9916I 8.00000 + 8.39864I
u = 0.148557
a = 11.0018
b = 0.391355
10.0986 22.3080
7
II. I
u
2
= h−2.77 × 10
64
u
39
5.90 × 10
64
u
38
+ · · · + 1.61 × 10
63
b + 2.16 ×
10
65
, 1.59 × 10
65
u
39
+ 3.38 × 10
65
u
38
+ · · · + 1.61 × 10
63
a 1.20 ×
10
66
, u
40
+ 2u
39
+ · · · 31u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
98.6099u
39
210.287u
38
+ ··· 17327.2u + 748.357
17.1944u
39
+ 36.6280u
38
+ ··· + 3110.76u 133.997
a
12
=
98.6099u
39
210.287u
38
+ ··· 17327.2u + 748.357
15.4838u
39
+ 32.9912u
38
+ ··· + 2804.27u 120.930
a
1
=
81.4155u
39
173.659u
38
+ ··· 14216.5u + 614.359
15.7727u
39
+ 33.5976u
38
+ ··· + 2856.50u 123.169
a
9
=
24.3237u
39
+ 51.8494u
38
+ ··· + 4186.11u 167.565
1.70809u
39
+ 3.60334u
38
+ ··· + 350.584u 14.1596
a
7
=
20.2827u
39
43.3042u
38
+ ··· 3387.05u + 134.967
2.73705u
39
5.80246u
38
+ ··· 523.421u + 21.6408
a
5
=
13.0361u
39
+ 27.9037u
38
+ ··· + 2358.25u 112.609
5.85766u
39
+ 12.5132u
38
+ ··· + 1011.37u 44.6712
a
6
=
57.2063u
39
+ 121.962u
38
+ ··· + 9989.28u 428.196
12.1175u
39
25.8205u
38
+ ··· 2184.36u + 94.7544
a
2
=
97.1883u
39
207.257u
38
+ ··· 17073.0u + 737.528
15.7727u
39
+ 33.5976u
38
+ ··· + 2856.50u 123.169
a
10
=
182.374u
39
388.925u
38
+ ··· 32001.5u + 1381.43
34.6744u
39
+ 73.8531u
38
+ ··· + 6269.35u 270.136
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21.2453u
39
45.2764u
38
+ ··· 3927.04u + 165.006
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
20
+ 8u
19
+ ··· + 67u + 9)
2
c
2
, c
5
(u
20
2u
19
+ ··· 7u + 3)
2
c
3
, c
9
u
40
+ 2u
39
+ ··· 31u + 1
c
4
, c
12
u
40
+ 4u
39
+ ··· + 37u + 1
c
6
, c
8
u
40
+ u
39
+ ··· 38u + 19
c
7
, c
10
, c
11
(u
20
5u
19
+ ··· 9u + 2)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 12y
19
+ ··· 223y + 81)
2
c
2
, c
5
(y
20
8y
19
+ ··· 67y + 9)
2
c
3
, c
9
y
40
+ 40y
39
+ ··· + 19y + 1
c
4
, c
12
y
40
36y
39
+ ··· 231y + 1
c
6
, c
8
y
40
+ y
39
+ ··· + 5548y + 361
c
7
, c
10
, c
11
(y
20
y
19
+ ··· + 15y + 4)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.107685 + 0.869000I
a = 0.09684 + 1.48156I
b = 0.316103 + 0.209805I
1.93389 2.53032I 6.19592 + 4.02108I
u = 0.107685 0.869000I
a = 0.09684 1.48156I
b = 0.316103 0.209805I
1.93389 + 2.53032I 6.19592 4.02108I
u = 0.373189 + 1.166640I
a = 0.636181 0.287370I
b = 1.69080 + 0.43538I
2.80723 + 3.42080I 0
u = 0.373189 1.166640I
a = 0.636181 + 0.287370I
b = 1.69080 0.43538I
2.80723 3.42080I 0
u = 1.163750 + 0.469682I
a = 0.612522 + 0.298397I
b = 0.004964 0.158740I
2.80723 3.42080I 0
u = 1.163750 0.469682I
a = 0.612522 0.298397I
b = 0.004964 + 0.158740I
2.80723 + 3.42080I 0
u = 0.091657 + 1.296970I
a = 0.932233 0.746341I
b = 1.73419 0.20045I
8.52898 1.35152I 0
u = 0.091657 1.296970I
a = 0.932233 + 0.746341I
b = 1.73419 + 0.20045I
8.52898 + 1.35152I 0
u = 0.231177 + 0.655143I
a = 0.791547 0.146798I
b = 1.64148 + 0.76911I
2.77919 0.72470I 6.99365 + 10.58729I
u = 0.231177 0.655143I
a = 0.791547 + 0.146798I
b = 1.64148 0.76911I
2.77919 + 0.72470I 6.99365 10.58729I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.615112 + 1.163700I
a = 0.568955 0.258845I
b = 1.72547 + 0.43428I
0.70919 8.81461I 0
u = 0.615112 1.163700I
a = 0.568955 + 0.258845I
b = 1.72547 0.43428I
0.70919 + 8.81461I 0
u = 0.110827 + 1.329560I
a = 0.137120 + 0.964756I
b = 0.151293 0.864996I
1.93389 2.53032I 0
u = 0.110827 1.329560I
a = 0.137120 0.964756I
b = 0.151293 + 0.864996I
1.93389 + 2.53032I 0
u = 0.299939 + 1.358570I
a = 0.641788 0.218251I
b = 1.43525 0.13921I
4.45736 0.35820I 0
u = 0.299939 1.358570I
a = 0.641788 + 0.218251I
b = 1.43525 + 0.13921I
4.45736 + 0.35820I 0
u = 0.080772 + 1.395440I
a = 0.824582 0.752869I
b = 1.85230 0.03442I
8.30234 + 6.78804I 0
u = 0.080772 1.395440I
a = 0.824582 + 0.752869I
b = 1.85230 + 0.03442I
8.30234 6.78804I 0
u = 0.109439 + 0.536709I
a = 0.04901 + 1.66403I
b = 0.383758 + 1.251790I
4.22584 + 1.07930I 18.8617 0.2582I
u = 0.109439 0.536709I
a = 0.04901 1.66403I
b = 0.383758 1.251790I
4.22584 1.07930I 18.8617 + 0.2582I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.38851 + 0.47418I
a = 0.073304 0.374070I
b = 0.386249 + 0.114590I
2.77919 0.72470I 0
u = 1.38851 0.47418I
a = 0.073304 + 0.374070I
b = 0.386249 0.114590I
2.77919 + 0.72470I 0
u = 0.48704 + 1.38580I
a = 0.839633 0.417130I
b = 1.128480 + 0.324249I
4.71743 3.54403I 0
u = 0.48704 1.38580I
a = 0.839633 + 0.417130I
b = 1.128480 0.324249I
4.71743 + 3.54403I 0
u = 0.40407 + 1.47756I
a = 0.618122 0.115570I
b = 1.342100 0.439927I
3.26793 + 6.33523I 0
u = 0.40407 1.47756I
a = 0.618122 + 0.115570I
b = 1.342100 + 0.439927I
3.26793 6.33523I 0
u = 0.27827 + 1.51128I
a = 0.730955 0.518496I
b = 1.66383 + 0.37308I
4.71743 + 3.54403I 0
u = 0.27827 1.51128I
a = 0.730955 + 0.518496I
b = 1.66383 0.37308I
4.71743 3.54403I 0
u = 1.54083 + 0.63283I
a = 0.476317 + 0.130739I
b = 0.0700266 + 0.0232375I
0.70919 + 8.81461I 0
u = 1.54083 0.63283I
a = 0.476317 0.130739I
b = 0.0700266 0.0232375I
0.70919 8.81461I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.35133 + 1.67126I
a = 0.780533 0.466237I
b = 1.62791 + 0.86433I
8.52898 + 1.35152I 0
u = 0.35133 1.67126I
a = 0.780533 + 0.466237I
b = 1.62791 0.86433I
8.52898 1.35152I 0
u = 0.17475 + 1.70544I
a = 0.173717 + 0.502733I
b = 0.090864 1.013700I
4.22584 + 1.07930I 0
u = 0.17475 1.70544I
a = 0.173717 0.502733I
b = 0.090864 + 1.013700I
4.22584 1.07930I 0
u = 0.42173 + 1.68142I
a = 0.766594 0.472156I
b = 1.44211 + 0.94264I
8.30234 6.78804I 0
u = 0.42173 1.68142I
a = 0.766594 + 0.472156I
b = 1.44211 0.94264I
8.30234 + 6.78804I 0
u = 0.1305640 + 0.0006413I
a = 0.76135 7.18315I
b = 0.314121 + 1.236250I
4.45736 0.35820I 3.17120 1.48913I
u = 0.1305640 0.0006413I
a = 0.76135 + 7.18315I
b = 0.314121 1.236250I
4.45736 + 0.35820I 3.17120 + 1.48913I
u = 0.0444473 + 0.0647209I
a = 9.50970 + 7.75152I
b = 0.46972 + 1.51512I
3.26793 + 6.33523I 4.73548 4.55872I
u = 0.0444473 0.0647209I
a = 9.50970 7.75152I
b = 0.46972 1.51512I
3.26793 6.33523I 4.73548 + 4.55872I
14
III. I
u
3
= h23u
9
+ 7u
8
+ · · · + 37b 9, 56u
9
9u
8
+ · · · + 37a + 149, u
10
+
4u
8
u
7
+ 8u
6
+ 9u
4
u
3
+ 2u
2
2u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
56
37
u
9
+
9
37
u
8
+ ··· + u
149
37
23
37
u
9
7
37
u
8
+ ··· + u +
9
37
a
12
=
56
37
u
9
+
9
37
u
8
+ ··· + u
149
37
1.24324u
9
0.378378u
8
+ ··· + 3u + 0.486486
a
1
=
33
37
u
9
+
2
37
u
8
+ ··· + 2u
140
37
0.648649u
9
0.675676u
8
+ ··· + 2u + 0.297297
a
9
=
1.89189u
9
0.0540541u
8
+ ··· 5u + 5.78378
1
37
u
9
+
18
37
u
8
+ ··· 2u
2
37
a
7
=
2.21622u
9
+ 0.891892u
8
+ ··· + 2u 6.43243
0.324324u
9
0.837838u
8
+ ··· + 3u + 0.648649
a
5
=
12
37
u
9
6
37
u
8
+ ··· u +
87
37
10
37
u
9
+
5
37
u
8
+ ··· u
17
37
a
6
=
0.540541u
9
+ 1.27027u
8
+ ··· 6u + 3.08108
19
37
u
9
9
37
u
8
+ ··· + u +
38
37
a
2
=
1.54054u
9
+ 0.729730u
8
+ ··· + 0.162162u
2
4.08108
0.648649u
9
0.675676u
8
+ ··· + 2u + 0.297297
a
10
=
2.05405u
9
0.972973u
8
+ ··· 2u + 6.10811
6
37
u
9
+
34
37
u
8
+ ··· 3u
12
37
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
205
37
u
9
84
37
u
8
+
936
37
u
7
673
37
u
6
+
2106
37
u
5
1127
37
u
4
+
2612
37
u
3
1326
37
u
2
+ 23u
1150
37
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
2u
9
+ 5u
8
4u
7
+ 4u
6
7u
5
+ 22u
4
54u
3
+ 40u
2
9u + 1
c
2
u
10
+ 4u
9
+ 7u
8
+ 4u
7
6u
6
15u
5
12u
4
+ 8u
2
+ 5u + 1
c
3
, c
9
u
10
+ 4u
8
u
7
+ 8u
6
+ 9u
4
u
3
+ 2u
2
2u 1
c
4
, c
12
u
10
+ 2u
9
4u
8
8u
7
+ 6u
6
+ 8u
5
6u
4
+ 3u
3
+ 4u
2
6u + 1
c
5
u
10
4u
9
+ 7u
8
4u
7
6u
6
+ 15u
5
12u
4
+ 8u
2
5u + 1
c
6
, c
8
u
10
+ u
9
u
8
+ 2u
7
+ u
6
2u
5
+ 3u
4
u
3
2u
2
+ 2u 1
c
7
u
10
+ 8u
9
+ ··· 2u 3
c
10
, c
11
u
10
8u
9
+ ··· + 2u 3
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ 6y
9
+ ··· y + 1
c
2
, c
5
y
10
2y
9
+ 5y
8
4y
7
+ 4y
6
7y
5
+ 22y
4
54y
3
+ 40y
2
9y + 1
c
3
, c
9
y
10
+ 8y
9
+ ··· 8y + 1
c
4
, c
12
y
10
12y
9
+ ··· 28y + 1
c
6
, c
8
y
10
3y
9
y
8
+ 4y
7
+ y
6
+ 4y
5
5y
4
7y
3
+ 2y
2
+ 1
c
7
, c
10
, c
11
y
10
6y
9
+ 5y
8
+ 13y
7
+ 47y
5
51y
4
237y
3
174y
2
88y + 9
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.113601 + 0.927431I
a = 0.11490 1.98015I
b = 0.206295 + 0.774410I
4.12954 + 3.49860I 9.01209 4.51290I
u = 0.113601 0.927431I
a = 0.11490 + 1.98015I
b = 0.206295 0.774410I
4.12954 3.49860I 9.01209 + 4.51290I
u = 0.495456 + 0.987445I
a = 1.009770 + 0.387931I
b = 1.61173 0.28244I
4.73376 + 2.16483I 1.22717 8.71022I
u = 0.495456 0.987445I
a = 1.009770 0.387931I
b = 1.61173 + 0.28244I
4.73376 2.16483I 1.22717 + 8.71022I
u = 0.609357
a = 0.481071
b = 0.787987
3.04786 13.9390
u = 0.84505 + 1.13903I
a = 0.589363 + 0.076741I
b = 1.336550 0.049223I
2.04346 8.28564I 5.35537 + 8.10267I
u = 0.84505 1.13903I
a = 0.589363 0.076741I
b = 1.336550 + 0.049223I
2.04346 + 8.28564I 5.35537 8.10267I
u = 0.37880 + 1.49046I
a = 0.751588 0.458927I
b = 1.42239 + 0.31186I
5.62989 + 3.50299I 1.76700 2.21802I
u = 0.37880 1.49046I
a = 0.751588 + 0.458927I
b = 1.42239 0.31186I
5.62989 3.50299I 1.76700 + 2.21802I
u = 0.323747
a = 4.94514
b = 0.194564
10.2174 45.2470
18
IV. I
u
4
= h−9u
7
+ 2u
6
+ · · · + 13b + 18, u
7
6u
5
+ 2u
4
10u
3
+ 6u
2
+ a
7u + 4, u
8
+ 6u
6
2u
5
+ 10u
4
6u
3
+ 7u
2
4u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
u
7
+ 6u
5
2u
4
+ 10u
3
6u
2
+ 7u 4
0.692308u
7
0.153846u
6
+ ··· + 4.76923u 1.38462
a
12
=
u
7
+ 6u
5
2u
4
+ 10u
3
6u
2
+ 7u 4
0.692308u
7
0.153846u
6
+ ··· + 3.76923u 1.38462
a
1
=
1.69231u
7
0.153846u
6
+ ··· + 11.7692u 5.38462
0.615385u
7
+ 0.307692u
6
+ ··· + 2.46154u 1.23077
a
9
=
2.38462u
7
0.307692u
6
+ ··· + 17.5385u 6.76923
0.538462u
7
+ 0.769231u
6
+ ··· + 3.15385u 1.07692
a
7
=
u
7
6u
5
+ 2u
4
10u
3
+ 6u
2
7u + 4
0.692308u
7
+ 0.153846u
6
+ ··· 3.76923u + 1.38462
a
5
=
1.38462u
7
+ 0.692308u
6
+ ··· + 6.53846u + 0.230769
0.153846u
7
0.0769231u
6
+ ··· + 1.38462u + 0.307692
a
6
=
0.230769u
7
0.615385u
6
+ ··· + 1.07692u + 2.46154
0.846154u
7
+ 0.0769231u
6
+ ··· 3.38462u + 1.69231
a
2
=
1.07692u
7
0.461538u
6
+ ··· + 9.30769u 4.15385
0.615385u
7
+ 0.307692u
6
+ ··· + 2.46154u 1.23077
a
10
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
32
13
u
7
16
13
u
6
200
13
u
5
36
13
u
4
24u
3
+
36
13
u
2
128
13
u
144
13
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
c
2
, c
5
(u
4
u
2
+ 1)
2
c
3
, c
9
u
8
+ 6u
6
2u
5
+ 10u
4
6u
3
+ 7u
2
4u + 1
c
4
, c
12
(u
2
+ 1)
4
c
6
, c
8
u
8
4u
7
+ 2u
6
+ 8u
5
6u
4
6u
3
+ 3u
2
+ 2u + 1
c
7
(u 1)
8
c
10
, c
11
(u + 1)
8
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
4
c
2
, c
5
(y
2
y + 1)
4
c
3
, c
9
y
8
+ 12y
7
+ 56y
6
+ 130y
5
+ 162y
4
+ 100y
3
+ 21y
2
2y + 1
c
4
, c
12
(y + 1)
8
c
6
, c
8
y
8
12y
7
+ 56y
6
130y
5
+ 162y
4
100y
3
+ 21y
2
+ 2y + 1
c
7
, c
10
, c
11
(y 1)
8
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.170691 + 0.964637I
a = 0.177866 + 1.005190I
b = 1.000000I
3.28987 2.02988I 14.0000 + 3.4641I
u = 0.170691 0.964637I
a = 0.177866 1.005190I
b = 1.000000I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.351035 + 1.212180I
a = 0.220415 + 0.761130I
b = 1.000000I
3.28987 2.02988I 14.0000 + 3.4641I
u = 0.351035 1.212180I
a = 0.220415 0.761130I
b = 1.000000I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.351035 + 0.212180I
a = 2.08644 + 1.26113I
b = 1.000000I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.351035 0.212180I
a = 2.08644 1.26113I
b = 1.000000I
3.28987 2.02988I 14.0000 + 3.4641I
u = 0.17069 + 1.96464I
a = 0.043891 + 0.505187I
b = 1.000000I
3.28987 + 2.02988I 14.0000 3.4641I
u = 0.17069 1.96464I
a = 0.043891 0.505187I
b = 1.000000I
3.28987 2.02988I 14.0000 + 3.4641I
22
V. I
u
5
= hb u + 1, a, u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u 1
a
11
=
0
u 1
a
12
=
0
u 1
a
1
=
u 1
1
a
9
=
u 1
u 1
a
7
=
0
u
a
5
=
1
0
a
6
=
u + 1
1
a
2
=
u
1
a
10
=
0
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 15
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(u 1)
2
c
3
, c
4
, c
9
c
12
u
2
u + 1
c
5
(u + 1)
2
c
7
, c
10
, c
11
u
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
8
(y 1)
2
c
3
, c
4
, c
9
c
12
y
2
+ y + 1
c
7
, c
10
, c
11
y
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
3.28987 15.0000
u = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
3.28987 15.0000
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
(u
2
u + 1)
4
· (u
10
2u
9
+ 5u
8
4u
7
+ 4u
6
7u
5
+ 22u
4
54u
3
+ 40u
2
9u + 1)
· ((u
20
+ 8u
19
+ ··· + 67u + 9)
2
)(u
26
+ 7u
25
+ ··· + 769u + 16)
c
2
(u 1)
2
(u
4
u
2
+ 1)
2
· (u
10
+ 4u
9
+ 7u
8
+ 4u
7
6u
6
15u
5
12u
4
+ 8u
2
+ 5u + 1)
· ((u
20
2u
19
+ ··· 7u + 3)
2
)(u
26
+ 7u
25
+ ··· 43u 4)
c
3
, c
9
(u
2
u + 1)(u
8
+ 6u
6
2u
5
+ 10u
4
6u
3
+ 7u
2
4u + 1)
· (u
10
+ 4u
8
u
7
+ 8u
6
+ 9u
4
u
3
+ 2u
2
2u 1)
· (u
26
+ 11u
24
+ ··· + 9u + 1)(u
40
+ 2u
39
+ ··· 31u + 1)
c
4
, c
12
(u
2
+ 1)
4
(u
2
u + 1)
· (u
10
+ 2u
9
4u
8
8u
7
+ 6u
6
+ 8u
5
6u
4
+ 3u
3
+ 4u
2
6u + 1)
· (u
26
+ 2u
25
+ ··· + 11u + 1)(u
40
+ 4u
39
+ ··· + 37u + 1)
c
5
(u + 1)
2
(u
4
u
2
+ 1)
2
· (u
10
4u
9
+ 7u
8
4u
7
6u
6
+ 15u
5
12u
4
+ 8u
2
5u + 1)
· ((u
20
2u
19
+ ··· 7u + 3)
2
)(u
26
+ 7u
25
+ ··· 43u 4)
c
6
, c
8
(u 1)
2
(u
8
4u
7
+ 2u
6
+ 8u
5
6u
4
6u
3
+ 3u
2
+ 2u + 1)
· (u
10
+ u
9
u
8
+ 2u
7
+ u
6
2u
5
+ 3u
4
u
3
2u
2
+ 2u 1)
· (u
26
+ u
25
+ ··· u 1)(u
40
+ u
39
+ ··· 38u + 19)
c
7
u
2
(u 1)
8
(u
10
+ 8u
9
+ ··· 2u 3)(u
20
5u
19
+ ··· 9u + 2)
2
· (u
26
+ 11u
25
+ ··· 23u 2)
c
10
, c
11
u
2
(u + 1)
8
(u
10
8u
9
+ ··· + 2u 3)(u
20
5u
19
+ ··· 9u + 2)
2
· (u
26
+ 11u
25
+ ··· 23u 2)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
2
+ y + 1)
4
(y
10
+ 6y
9
+ ··· y + 1)
· (y
20
+ 12y
19
+ ··· 223y + 81)
2
· (y
26
+ 17y
25
+ ··· 418017y + 256)
c
2
, c
5
(y 1)
2
(y
2
y + 1)
4
· (y
10
2y
9
+ 5y
8
4y
7
+ 4y
6
7y
5
+ 22y
4
54y
3
+ 40y
2
9y + 1)
· ((y
20
8y
19
+ ··· 67y + 9)
2
)(y
26
7y
25
+ ··· 769y + 16)
c
3
, c
9
(y
2
+ y + 1)
· (y
8
+ 12y
7
+ 56y
6
+ 130y
5
+ 162y
4
+ 100y
3
+ 21y
2
2y + 1)
· (y
10
+ 8y
9
+ ··· 8y + 1)(y
26
+ 22y
25
+ ··· 33y + 1)
· (y
40
+ 40y
39
+ ··· + 19y + 1)
c
4
, c
12
((y + 1)
8
)(y
2
+ y + 1)(y
10
12y
9
+ ··· 28y + 1)
· (y
26
26y
25
+ ··· 17y + 1)(y
40
36y
39
+ ··· 231y + 1)
c
6
, c
8
((y 1)
2
)(y
8
12y
7
+ ··· + 2y + 1)
· (y
10
3y
9
y
8
+ 4y
7
+ y
6
+ 4y
5
5y
4
7y
3
+ 2y
2
+ 1)
· (y
26
13y
25
+ ··· 5y + 1)(y
40
+ y
39
+ ··· + 5548y + 361)
c
7
, c
10
, c
11
y
2
(y 1)
8
· (y
10
6y
9
+ 5y
8
+ 13y
7
+ 47y
5
51y
4
237y
3
174y
2
88y + 9)
· ((y
20
y
19
+ ··· + 15y + 4)
2
)(y
26
3y
25
+ ··· 89y + 4)
28