12n
0442
(K12n
0442
)
A knot diagram
1
Linearized knot diagam
3 6 12 10 2 4 11 3 6 8 7 9
Solving Sequence
3,6
2 1
5,10
4 9 8 11 7 12
c
2
c
1
c
5
c
4
c
9
c
8
c
10
c
7
c
12
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h191026393u
16
1652039068u
15
+ ··· + 64719689b + 1958494945,
1223765713u
16
+ 10597268099u
15
+ ··· + 1553272536a 9878621497,
u
17
11u
16
+ ··· + 25u 24i
I
u
2
= h−u
9
5u
8
6u
7
+ 8u
6
+ 25u
5
+ 16u
4
11u
3
14u
2
+ b + u + 7,
7u
9
51u
8
149u
7
213u
6
119u
5
+ 61u
4
+ 107u
3
+ 8u
2
+ 5a 56u 27,
u
10
+ 8u
9
+ 27u
8
+ 49u
7
+ 47u
6
+ 12u
5
21u
4
19u
3
+ 3u
2
+ 11u + 5i
I
u
3
= h−u
8
a + 2u
8
+ ··· a 4, u
8
a u
8
+ ··· + a
2
+ 4, u
9
+ 4u
8
+ u
7
9u
6
+ 12u
4
+ 2u
3
+ 4u
2
+ 1i
I
u
4
= hb
4
2b
3
+ 3b
2
2b + 3, a + 1, u 1i
I
u
5
= hb
2
+ b + 1, a 1, u 1i
* 5 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.91 × 10
8
u
16
1.65 × 10
9
u
15
+ · · · + 6.47 × 10
7
b + 1.96 × 10
9
, 1.22 ×
10
9
u
16
+1.06×10
10
u
15
+· · ·+1.55×10
9
a9.88×10
9
, u
17
11u
16
+· · ·+25u24i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
10
=
0.787863u
16
6.82254u
15
+ ··· 4.19484u + 6.35988
2.95160u
16
+ 25.5261u
15
+ ··· + 20.2471u 30.2612
a
4
=
0.502780u
16
+ 4.36822u
15
+ ··· + 2.45724u 4.87506
1.68304u
16
14.9279u
15
+ ··· 10.7408u + 18.8611
a
9
=
0.787863u
16
6.82254u
15
+ ··· 4.19484u + 6.35988
1.37093u
16
11.8653u
15
+ ··· 6.94294u + 13.9936
a
8
=
0.583066u
16
+ 5.04279u
15
+ ··· + 2.74810u 7.63370
1.37093u
16
11.8653u
15
+ ··· 6.94294u + 13.9936
a
11
=
0.149136u
16
+ 1.25050u
15
+ ··· + 3.19107u 2.49878
0.717661u
16
+ 6.21375u
15
+ ··· + 5.68076u 7.77323
a
7
=
0.785878u
16
+ 6.96162u
15
+ ··· + 3.90013u 8.90611
0.0529908u
16
+ 0.408128u
15
+ ··· + 0.448137u 0.173332
a
12
=
0.659584u
16
5.85549u
15
+ ··· 6.23720u + 8.19166
1.16236u
16
10.2237u
15
+ ··· 7.69444u + 12.0667
(ii) Obstruction class = 1
(iii) Cusp Shapes =
258679440
64719689
u
16
2255352174
64719689
u
15
+ ···
1298645313
64719689
u +
2660816310
64719689
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 33u
16
+ ··· 5039u + 576
c
2
, c
5
u
17
+ 11u
16
+ ··· + 25u + 24
c
3
, c
6
u
17
u
16
+ ··· + 4u + 1
c
4
, c
8
u
17
+ 14u
15
+ ··· 6u
2
+ 1
c
7
, c
10
, c
11
u
17
6u
16
+ ··· + 19u 2
c
9
, c
12
u
17
+ u
16
+ ··· + 33u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
117y
16
+ ··· + 20649889y 331776
c
2
, c
5
y
17
33y
16
+ ··· 5039y 576
c
3
, c
6
y
17
+ 13y
16
+ ··· 22y 1
c
4
, c
8
y
17
+ 28y
16
+ ··· + 12y 1
c
7
, c
10
, c
11
y
17
+ 14y
16
+ ··· + 93y 4
c
9
, c
12
y
17
+ 35y
16
+ ··· + 1875y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.942057 + 0.494267I
a = 0.753350 0.421156I
b = 0.435867 0.555452I
1.96186 + 2.24541I 1.44074 2.23530I
u = 0.942057 0.494267I
a = 0.753350 + 0.421156I
b = 0.435867 + 0.555452I
1.96186 2.24541I 1.44074 + 2.23530I
u = 1.095620 + 0.300147I
a = 0.131673 0.311290I
b = 1.033950 0.750497I
2.79366 + 0.08444I 4.63288 + 0.68709I
u = 1.095620 0.300147I
a = 0.131673 + 0.311290I
b = 1.033950 + 0.750497I
2.79366 0.08444I 4.63288 0.68709I
u = 0.836685
a = 0.0818231
b = 0.476471
1.37068 8.35980
u = 0.320479 + 0.572318I
a = 0.08297 + 1.68332I
b = 0.103629 + 0.996127I
7.44498 + 0.11919I 3.63980 1.93920I
u = 0.320479 0.572318I
a = 0.08297 1.68332I
b = 0.103629 0.996127I
7.44498 0.11919I 3.63980 + 1.93920I
u = 1.25347 + 0.91415I
a = 0.916560 0.265291I
b = 0.46012 + 1.98973I
5.01538 + 5.62718I 1.75252 3.01899I
u = 1.25347 0.91415I
a = 0.916560 + 0.265291I
b = 0.46012 1.98973I
5.01538 5.62718I 1.75252 + 3.01899I
u = 0.032060 + 0.412278I
a = 1.57998 0.21566I
b = 0.592975 + 0.413733I
0.026615 1.286250I 0.68462 + 4.17584I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.032060 0.412278I
a = 1.57998 + 0.21566I
b = 0.592975 0.413733I
0.026615 + 1.286250I 0.68462 4.17584I
u = 2.13442 + 0.33433I
a = 0.041538 + 1.111040I
b = 1.96060 2.85602I
10.20570 0.23808I 2.00230 0.80635I
u = 2.13442 0.33433I
a = 0.041538 1.111040I
b = 1.96060 + 2.85602I
10.20570 + 0.23808I 2.00230 + 0.80635I
u = 2.15252 + 0.26857I
a = 0.260975 1.202630I
b = 2.33574 + 2.94126I
7.3294 12.2045I 2.87951 + 5.29191I
u = 2.15252 0.26857I
a = 0.260975 + 1.202630I
b = 2.33574 2.94126I
7.3294 + 12.2045I 2.87951 5.29191I
u = 2.24717 + 0.01207I
a = 0.122236 + 1.201380I
b = 0.47148 3.89441I
13.0039 6.5145I 5.31806 + 4.17343I
u = 2.24717 0.01207I
a = 0.122236 1.201380I
b = 0.47148 + 3.89441I
13.0039 + 6.5145I 5.31806 4.17343I
6
II.
I
u
2
= h−u
9
5u
8
+· · ·+b+7, 7u
9
51u
8
+· · ·+5a27, u
10
+8u
9
+· · ·+11u+5i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
10
=
7
5
u
9
+
51
5
u
8
+ ··· +
56
5
u +
27
5
u
9
+ 5u
8
+ 6u
7
8u
6
25u
5
16u
4
+ 11u
3
+ 14u
2
u 7
a
4
=
4
5
u
9
+
27
5
u
8
+ ··· +
32
5
u +
9
5
u
9
8u
8
26u
7
43u
6
33u
5
+ 3u
4
+ 24u
3
+ 10u
2
9u 9
a
9
=
7
5
u
9
+
51
5
u
8
+ ··· +
56
5
u +
27
5
u
9
+ 6u
8
+ 13u
7
+ 10u
6
5u
5
12u
4
u
3
+ 7u
2
+ 3u 2
a
8
=
2
5
u
9
+
21
5
u
8
+ ··· +
41
5
u +
37
5
u
9
+ 6u
8
+ 13u
7
+ 10u
6
5u
5
12u
4
u
3
+ 7u
2
+ 3u 2
a
11
=
13
5
u
9
+
89
5
u
8
+ ··· +
84
5
u +
23
5
u
9
9u
8
33u
7
61u
6
52u
5
+ 2u
4
+ 38u
3
+ 16u
2
15u 13
a
7
=
9
5
u
9
67
5
u
8
+ ···
77
5
u
54
5
2u
9
13u
8
33u
7
39u
6
12u
5
+ 21u
4
+ 18u
3
4u
2
11u 1
a
12
=
1
5
u
9
+
8
5
u
8
+ ··· +
8
5
u +
16
5
u
9
+ 7u
8
+ 20u
7
+ 29u
6
+ 18u
5
6u
4
15u
3
4u
2
+ 7u + 4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 8u
9
57u
8
163u
7
230u
6
130u
5
+ 61u
4
+ 115u
3
+ 15u
2
61u 34
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
10u
9
+ ··· 91u + 25
c
2
u
10
+ 8u
9
+ ··· + 11u + 5
c
3
, c
6
u
10
+ u
9
+ 3u
8
+ u
6
3u
5
2u
4
u
3
+ 2u + 1
c
4
, c
8
u
10
+ 6u
8
+ 7u
6
2u
5
+ 5u
4
+ 2u
3
+ 5u
2
+ 2u + 1
c
5
u
10
8u
9
+ ··· 11u + 5
c
7
u
10
3u
9
+ ··· 10u + 3
c
9
, c
12
u
10
u
9
+ 6u
8
10u
7
+ 10u
6
6u
5
+ 2u
4
u
3
+ 2u
2
u + 1
c
10
, c
11
u
10
+ 3u
9
+ ··· + 10u + 3
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
22y
9
+ ··· + 2569y + 625
c
2
, c
5
y
10
10y
9
+ ··· 91y + 25
c
3
, c
6
y
10
+ 5y
9
+ 11y
8
+ 8y
7
9y
6
15y
5
+ 4y
4
+ 13y
3
4y + 1
c
4
, c
8
y
10
+ 12y
9
+ ··· + 6y + 1
c
7
, c
10
, c
11
y
10
+ 9y
9
+ ··· + 20y + 9
c
9
, c
12
y
10
+ 11y
9
+ 36y
8
+ 12y
7
+ 6y
6
+ 8y
5
+ 24y
4
+ 15y
3
+ 6y
2
+ 3y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.698244 + 0.611679I
a = 0.594983 + 0.452728I
b = 1.12357 1.18282I
6.61177 + 7.24611I 1.48024 6.55546I
u = 0.698244 0.611679I
a = 0.594983 0.452728I
b = 1.12357 + 1.18282I
6.61177 7.24611I 1.48024 + 6.55546I
u = 0.765895 + 0.862612I
a = 0.577252 + 0.100829I
b = 0.25692 + 1.47319I
1.12408 + 3.31101I 1.94210 5.90631I
u = 0.765895 0.862612I
a = 0.577252 0.100829I
b = 0.25692 1.47319I
1.12408 3.31101I 1.94210 + 5.90631I
u = 0.649524 + 0.270637I
a = 0.986717 + 0.863844I
b = 0.280240 0.198619I
0.88058 + 1.43796I 7.95798 4.23415I
u = 0.649524 0.270637I
a = 0.986717 0.863844I
b = 0.280240 + 0.198619I
0.88058 1.43796I 7.95798 + 4.23415I
u = 1.11228 + 0.88745I
a = 0.346880 0.585052I
b = 1.56427 1.47362I
5.04002 1.56785I 0.680979 + 1.239329I
u = 1.11228 0.88745I
a = 0.346880 + 0.585052I
b = 1.56427 + 1.47362I
5.04002 + 1.56785I 0.680979 1.239329I
u = 2.07310 + 0.22780I
a = 0.077895 + 1.141750I
b = 1.47786 2.59954I
11.89530 + 1.62532I 4.89918 0.65986I
u = 2.07310 0.22780I
a = 0.077895 1.141750I
b = 1.47786 + 2.59954I
11.89530 1.62532I 4.89918 + 0.65986I
10
III. I
u
3
= h−u
8
a + 2u
8
+ · · · a 4, u
8
a u
8
+ · · · + a
2
+ 4, u
9
+ 4u
8
+
u
7
9u
6
+ 12u
4
+ 2u
3
+ 4u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
10
=
a
1
8
u
8
a
1
4
u
8
+ ··· +
1
8
a +
1
2
a
4
=
1
4
u
8
a +
7
8
u
8
+ ··· +
1
2
a +
15
8
1
4
u
8
a +
3
8
u
8
+ ··· +
1
2
a
5
8
a
9
=
a
1
8
u
8
a
1
4
u
8
+ ··· +
1
8
a +
1
2
a
8
=
1
8
u
8
a +
1
4
u
8
+ ··· +
7
8
a
1
2
1
8
u
8
a
1
4
u
8
+ ··· +
1
8
a +
1
2
a
11
=
1
4
u
8
a +
1
2
u
8
+ ··· +
1
2
a +
5
4
1
8
u
8
a
3
4
u
8
+ ··· +
3
8
a
3
4
a
7
=
1
2
u
8
a
7
8
u
8
+ ···
1
4
a
7
8
1
4
u
8
a +
3
8
u
8
+ ··· +
3
4
a
3
8
a
12
=
u
8
4u
7
u
6
+ 9u
5
12u
3
2u
2
4u
1
2
u
8
a +
1
8
u
8
+ ··· +
1
4
a
7
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5
4
u
8
+
25
4
u
7
+
7
2
u
6
63
4
u
5
15
4
u
4
+
93
4
u
3
+
7
4
u
2
+
27
4
u
13
4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 14u
8
+ 73u
7
+ 173u
6
+ 188u
5
+ 80u
4
74u
3
+ 40u
2
8u + 1)
2
c
2
, c
5
(u
9
4u
8
+ u
7
+ 9u
6
12u
4
+ 2u
3
4u
2
1)
2
c
3
, c
6
u
18
4u
17
+ ··· 19u + 7
c
4
, c
8
u
18
+ 17u
16
+ ··· 33u + 61
c
7
, c
10
, c
11
(u
9
+ u
8
+ 5u
7
+ 4u
6
+ 8u
5
+ 5u
4
+ 3u
3
2u 2)
2
c
9
, c
12
u
18
3u
17
+ ··· 38u + 787
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
9
50y
8
+ ··· 16y 1)
2
c
2
, c
5
(y
9
14y
8
+ 73y
7
173y
6
+ 188y
5
80y
4
74y
3
40y
2
8y 1)
2
c
3
, c
6
y
18
+ 2y
17
+ ··· + 451y + 49
c
4
, c
8
y
18
+ 34y
17
+ ··· + 4279y + 3721
c
7
, c
10
, c
11
(y
9
+ 9y
8
+ 33y
7
+ 60y
6
+ 50y
5
+ 7y
4
7y
3
+ 8y
2
+ 4y 4)
2
c
9
, c
12
y
18
+ 29y
17
+ ··· + 1731530y + 619369
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.149930 + 0.591217I
a = 0.601255 0.402054I
b = 0.395481 + 0.118419I
1.86176 + 1.02570I 2.63382 1.45009I
u = 1.149930 + 0.591217I
a = 1.283380 0.095795I
b = 0.77918 2.34414I
1.86176 + 1.02570I 2.63382 1.45009I
u = 1.149930 0.591217I
a = 0.601255 + 0.402054I
b = 0.395481 0.118419I
1.86176 1.02570I 2.63382 + 1.45009I
u = 1.149930 0.591217I
a = 1.283380 + 0.095795I
b = 0.77918 + 2.34414I
1.86176 1.02570I 2.63382 + 1.45009I
u = 0.256958 + 0.481474I
a = 2.09172 + 0.18082I
b = 0.347105 + 0.467672I
5.86635 5.34937I 0.84423 + 2.78056I
u = 0.256958 + 0.481474I
a = 0.39890 2.37095I
b = 1.48260 1.54705I
5.86635 5.34937I 0.84423 + 2.78056I
u = 0.256958 0.481474I
a = 2.09172 0.18082I
b = 0.347105 0.467672I
5.86635 + 5.34937I 0.84423 2.78056I
u = 0.256958 0.481474I
a = 0.39890 + 2.37095I
b = 1.48260 + 1.54705I
5.86635 + 5.34937I 0.84423 2.78056I
u = 0.202323 + 0.429977I
a = 1.06958 1.32915I
b = 0.028684 + 0.501202I
0.08117 1.83340I 4.79553 + 3.05314I
u = 0.202323 + 0.429977I
a = 1.78447 + 1.20971I
b = 0.54712 + 1.46919I
0.08117 1.83340I 4.79553 + 3.05314I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.202323 0.429977I
a = 1.06958 + 1.32915I
b = 0.028684 0.501202I
0.08117 + 1.83340I 4.79553 3.05314I
u = 0.202323 0.429977I
a = 1.78447 1.20971I
b = 0.54712 1.46919I
0.08117 + 1.83340I 4.79553 3.05314I
u = 2.04009 + 0.22792I
a = 0.374086 0.921422I
b = 2.26253 + 1.38756I
10.25890 + 3.35426I 1.96692 2.76177I
u = 2.04009 + 0.22792I
a = 0.189467 + 1.360530I
b = 0.72311 3.40708I
10.25890 + 3.35426I 1.96692 2.76177I
u = 2.04009 0.22792I
a = 0.374086 + 0.921422I
b = 2.26253 1.38756I
10.25890 3.35426I 1.96692 + 2.76177I
u = 2.04009 0.22792I
a = 0.189467 1.360530I
b = 0.72311 + 3.40708I
10.25890 3.35426I 1.96692 + 2.76177I
u = 2.11041
a = 0.244866 + 1.162790I
b = 0.92445 2.96892I
14.5153 7.51900
u = 2.11041
a = 0.244866 1.162790I
b = 0.92445 + 2.96892I
14.5153 7.51900
15
IV. I
u
4
= hb
4
2b
3
+ 3b
2
2b + 3, a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
10
=
1
b
a
4
=
b + 1
b
2
a
9
=
1
b 1
a
8
=
b
b 1
a
11
=
b
3
+ b
2
b 1
b
3
2b
2
+ 3b 1
a
7
=
b
2
+ 2b 1
b
3
b
2
+ 1
a
12
=
1
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
6
u
4
+ 2u
3
+ 3u
2
+ 2u + 3
c
4
, c
8
u
4
2u
3
+ 3u
2
2u + 3
c
5
, c
9
, c
12
(u + 1)
4
c
7
, c
10
, c
11
(u
2
+ 2)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
9
, c
12
(y 1)
4
c
3
, c
4
, c
6
c
8
y
4
+ 2y
3
+ 7y
2
+ 14y + 9
c
7
, c
10
, c
11
(y + 2)
4
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.152220 + 1.084150I
4.93480 0
u = 1.00000
a = 1.00000
b = 0.152220 1.084150I
4.93480 0
u = 1.00000
a = 1.00000
b = 1.15222 + 1.08415I
4.93480 0
u = 1.00000
a = 1.00000
b = 1.15222 1.08415I
4.93480 0
19
V. I
u
5
= hb
2
+ b + 1, a 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
5
=
1
0
a
10
=
1
b
a
4
=
b + 1
b 1
a
9
=
1
b + 1
a
8
=
b
b + 1
a
11
=
1
b
a
7
=
b
b + 1
a
12
=
1
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
9
c
12
(u 1)
2
c
3
, c
4
, c
6
c
8
u
2
+ u + 1
c
5
(u + 1)
2
c
7
, c
10
, c
11
u
2
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
9
, c
12
(y 1)
2
c
3
, c
4
, c
6
c
8
y
2
+ y + 1
c
7
, c
10
, c
11
y
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.500000 + 0.866025I
0 6.00000
u = 1.00000
a = 1.00000
b = 0.500000 0.866025I
0 6.00000
23
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
· (u
9
+ 14u
8
+ 73u
7
+ 173u
6
+ 188u
5
+ 80u
4
74u
3
+ 40u
2
8u + 1)
2
· (u
10
10u
9
+ ··· 91u + 25)(u
17
+ 33u
16
+ ··· 5039u + 576)
c
2
(u 1)
6
(u
9
4u
8
+ u
7
+ 9u
6
12u
4
+ 2u
3
4u
2
1)
2
· (u
10
+ 8u
9
+ ··· + 11u + 5)(u
17
+ 11u
16
+ ··· + 25u + 24)
c
3
, c
6
(u
2
+ u + 1)(u
4
+ 2u
3
+ 3u
2
+ 2u + 3)
· (u
10
+ u
9
+ ··· + 2u + 1)(u
17
u
16
+ ··· + 4u + 1)
· (u
18
4u
17
+ ··· 19u + 7)
c
4
, c
8
(u
2
+ u + 1)(u
4
2u
3
+ 3u
2
2u + 3)
· (u
10
+ 6u
8
+ 7u
6
2u
5
+ 5u
4
+ 2u
3
+ 5u
2
+ 2u + 1)
· (u
17
+ 14u
15
+ ··· 6u
2
+ 1)(u
18
+ 17u
16
+ ··· 33u + 61)
c
5
(u + 1)
6
(u
9
4u
8
+ u
7
+ 9u
6
12u
4
+ 2u
3
4u
2
1)
2
· (u
10
8u
9
+ ··· 11u + 5)(u
17
+ 11u
16
+ ··· + 25u + 24)
c
7
u
2
(u
2
+ 2)
2
(u
9
+ u
8
+ 5u
7
+ 4u
6
+ 8u
5
+ 5u
4
+ 3u
3
2u 2)
2
· (u
10
3u
9
+ ··· 10u + 3)(u
17
6u
16
+ ··· + 19u 2)
c
9
, c
12
(u 1)
2
(u + 1)
4
· (u
10
u
9
+ 6u
8
10u
7
+ 10u
6
6u
5
+ 2u
4
u
3
+ 2u
2
u + 1)
· (u
17
+ u
16
+ ··· + 33u + 3)(u
18
3u
17
+ ··· 38u + 787)
c
10
, c
11
u
2
(u
2
+ 2)
2
(u
9
+ u
8
+ 5u
7
+ 4u
6
+ 8u
5
+ 5u
4
+ 3u
3
2u 2)
2
· (u
10
+ 3u
9
+ ··· + 10u + 3)(u
17
6u
16
+ ··· + 19u 2)
24
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
9
50y
8
+ ··· 16y 1)
2
· (y
10
22y
9
+ ··· + 2569y + 625)
· (y
17
117y
16
+ ··· + 20649889y 331776)
c
2
, c
5
(y 1)
6
· (y
9
14y
8
+ 73y
7
173y
6
+ 188y
5
80y
4
74y
3
40y
2
8y 1)
2
· (y
10
10y
9
+ ··· 91y + 25)(y
17
33y
16
+ ··· 5039y 576)
c
3
, c
6
(y
2
+ y + 1)(y
4
+ 2y
3
+ 7y
2
+ 14y + 9)
· (y
10
+ 5y
9
+ 11y
8
+ 8y
7
9y
6
15y
5
+ 4y
4
+ 13y
3
4y + 1)
· (y
17
+ 13y
16
+ ··· 22y 1)(y
18
+ 2y
17
+ ··· + 451y + 49)
c
4
, c
8
(y
2
+ y + 1)(y
4
+ 2y
3
+ ··· + 14y + 9)(y
10
+ 12y
9
+ ··· + 6y + 1)
· (y
17
+ 28y
16
+ ··· + 12y 1)(y
18
+ 34y
17
+ ··· + 4279y + 3721)
c
7
, c
10
, c
11
y
2
(y + 2)
4
· (y
9
+ 9y
8
+ 33y
7
+ 60y
6
+ 50y
5
+ 7y
4
7y
3
+ 8y
2
+ 4y 4)
2
· (y
10
+ 9y
9
+ ··· + 20y + 9)(y
17
+ 14y
16
+ ··· + 93y 4)
c
9
, c
12
(y 1)
6
· (y
10
+ 11y
9
+ 36y
8
+ 12y
7
+ 6y
6
+ 8y
5
+ 24y
4
+ 15y
3
+ 6y
2
+ 3y + 1)
· (y
17
+ 35y
16
+ ··· + 1875y 9)
· (y
18
+ 29y
17
+ ··· + 1731530y + 619369)
25