12n
0443
(K12n
0443
)
A knot diagram
1
Linearized knot diagam
3 6 12 11 2 4 12 11 3 6 8 10
Solving Sequence
3,12 4,8
7 6 2 1 5 11 9 10
c
3
c
7
c
6
c
2
c
1
c
5
c
11
c
8
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 64645u
14
65427u
13
+ ··· + 135557a + 338831,
u
15
+ 10u
13
+ 3u
12
+ 43u
11
+ 24u
10
+ 99u
9
+ 76u
8
+ 124u
7
+ 108u
6
+ 79u
5
+ 56u
4
+ 21u
3
+ u
2
1i
I
u
2
= hb + u, 8u
8
+ 3u
7
25u
6
+ 25u
5
9u
4
+ 26u
3
+ 23u
2
+ a 34u 19,
u
9
+ 3u
7
2u
6
3u
4
4u
3
+ 3u
2
+ 4u + 1i
I
u
3
= h80577u
11
475411u
10
+ ··· + 2674873b 7542897,
1788526u
11
120225u
10
+ ··· + 29423603a + 69597502,
u
12
2u
11
+ 4u
10
9u
9
+ 8u
8
14u
7
+ 17u
6
10u
5
+ 40u
4
u
3
+ 45u
2
5u + 11i
I
u
4
= hb u 1, a, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hbu, 64645u
14
65427u
13
+· · ·+135557a+338831, u
15
+10u
13
+· · ·+u
2
1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
0.476884u
14
+ 0.482653u
13
+ ··· + 1.81451u 2.49955
u
a
7
=
0.476884u
14
+ 0.482653u
13
+ ··· + 1.81451u 2.49955
0.00639583u
14
0.283881u
13
+ ··· + 0.523116u + 0.482653
a
6
=
0.476884u
14
+ 0.482653u
13
+ ··· + 2.81451u 2.49955
0.00639583u
14
0.283881u
13
+ ··· + 0.523116u + 0.482653
a
2
=
0.0111245u
14
+ 0.0185605u
13
+ ··· 0.528095u + 2.36120
0.205168u
14
0.302522u
13
+ ··· 0.493778u + 0.0121646
a
1
=
0.194044u
14
0.283962u
13
+ ··· 1.02187u + 2.37336
0.205168u
14
0.302522u
13
+ ··· 0.493778u + 0.0121646
a
5
=
0.879586u
14
0.206208u
13
+ ··· + 4.63070u 0.816210
0.198691u
14
+ 0.0715566u
13
+ ··· + 0.126183u + 0.282840
a
11
=
0.897106u
14
0.0962326u
13
+ ··· 5.57949u 2.06234
0.00639583u
14
+ 0.283881u
13
+ ··· + 1.47688u 0.482653
a
9
=
0.475313u
14
0.416371u
13
+ ··· 7.11258u + 0.678549
0.0187228u
14
+ 0.0271177u
13
+ ··· + 0.579778u 0.386420
a
10
=
0.494036u
14
0.389253u
13
+ ··· 6.53280u + 0.292128
0.0187228u
14
+ 0.0271177u
13
+ ··· + 0.579778u 0.386420
(ii) Obstruction class = 1
(iii) Cusp Shapes =
335739
135557
u
14
152409
135557
u
13
+ ··· +
281645
135557
u +
754781
135557
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 20u
14
+ ··· + 849u + 16
c
2
, c
5
u
15
+ 8u
14
+ ··· + 23u 4
c
3
, c
6
u
15
+ 10u
13
+ ··· + u
2
1
c
4
, c
9
u
15
+ 13u
13
+ ··· + u 1
c
7
, c
8
, c
11
u
15
+ 6u
14
+ ··· 5u 2
c
10
, c
12
u
15
u
14
+ ··· 11u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
44y
14
+ ··· + 606753y 256
c
2
, c
5
y
15
20y
14
+ ··· + 849y 16
c
3
, c
6
y
15
+ 20y
14
+ ··· + 2y 1
c
4
, c
9
y
15
+ 26y
14
+ ··· 3y 1
c
7
, c
8
, c
11
y
15
+ 10y
14
+ ··· 39y 4
c
10
, c
12
y
15
+ 19y
14
+ ··· + 95y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.045427 + 1.039060I
a = 1.54244 0.28684I
b = 0.045427 + 1.039060I
11.28150 + 1.93400I 1.23160 1.02985I
u = 0.045427 1.039060I
a = 1.54244 + 0.28684I
b = 0.045427 1.039060I
11.28150 1.93400I 1.23160 + 1.02985I
u = 0.608111 + 0.211954I
a = 0.250704 0.629982I
b = 0.608111 + 0.211954I
1.45492 + 0.35788I 5.52968 1.62247I
u = 0.608111 0.211954I
a = 0.250704 + 0.629982I
b = 0.608111 0.211954I
1.45492 0.35788I 5.52968 + 1.62247I
u = 0.06518 + 1.45860I
a = 0.406098 0.405536I
b = 0.06518 + 1.45860I
3.63562 + 1.34338I 2.60619 3.21341I
u = 0.06518 1.45860I
a = 0.406098 + 0.405536I
b = 0.06518 1.45860I
3.63562 1.34338I 2.60619 + 3.21341I
u = 0.094803 + 0.399698I
a = 3.16771 + 0.99078I
b = 0.094803 + 0.399698I
3.74744 + 2.10465I 5.87690 3.70353I
u = 0.094803 0.399698I
a = 3.16771 0.99078I
b = 0.094803 0.399698I
3.74744 2.10465I 5.87690 + 3.70353I
u = 0.23646 + 1.59594I
a = 0.306052 0.769874I
b = 0.23646 + 1.59594I
4.76135 4.08820I 0.76517 + 2.11409I
u = 0.23646 1.59594I
a = 0.306052 + 0.769874I
b = 0.23646 1.59594I
4.76135 + 4.08820I 0.76517 2.11409I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.47405 + 1.56562I
a = 0.532315 0.431362I
b = 0.47405 + 1.56562I
2.30289 + 5.28134I 1.29339 3.24953I
u = 0.47405 1.56562I
a = 0.532315 + 0.431362I
b = 0.47405 1.56562I
2.30289 5.28134I 1.29339 + 3.24953I
u = 0.273398
a = 2.01535
b = 0.273398
0.899032 11.1030
u = 0.69320 + 1.66542I
a = 0.550040 0.669032I
b = 0.69320 + 1.66542I
8.17186 11.29110I 0.74494 + 5.10967I
u = 0.69320 1.66542I
a = 0.550040 + 0.669032I
b = 0.69320 1.66542I
8.17186 + 11.29110I 0.74494 5.10967I
6
II.
I
u
2
= hb+u, 8u
8
+3u
7
+· · ·+a19, u
9
+3u
7
2u
6
3u
4
4u
3
+3u
2
+4u+1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
8u
8
3u
7
+ 25u
6
25u
5
+ 9u
4
26u
3
23u
2
+ 34u + 19
u
a
7
=
8u
8
3u
7
+ 25u
6
25u
5
+ 9u
4
26u
3
23u
2
+ 34u + 19
u
8
+ 3u
6
2u
5
2u
3
4u
2
+ 3u + 3
a
6
=
8u
8
3u
7
+ 25u
6
25u
5
+ 9u
4
26u
3
23u
2
+ 33u + 19
u
8
+ 3u
6
2u
5
3u
3
4u
2
+ 3u + 3
a
2
=
11u
8
+ 5u
7
35u
6
+ 38u
5
16u
4
+ 40u
3
+ 27u
2
47u 23
2u
8
+ u
7
6u
6
+ 7u
5
2u
4
+ 6u
3
+ 5u
2
10u 6
a
1
=
13u
8
+ 6u
7
41u
6
+ 45u
5
18u
4
+ 46u
3
+ 32u
2
57u 29
2u
8
+ u
7
6u
6
+ 7u
5
2u
4
+ 6u
3
+ 5u
2
10u 6
a
5
=
4u
8
+ 3u
7
14u
6
+ 18u
5
13u
4
+ 19u
3
+ 2u
2
16u 3
3u
8
+ u
7
10u
6
+ 9u
5
5u
4
+ 11u
3
+ 9u
2
10u 5
a
11
=
14u
8
8u
7
+ 46u
6
54u
5
+ 29u
4
57u
3
25u
2
+ 58u + 24
u
8
+ 3u
6
2u
5
2u
3
4u
2
+ 5u + 3
a
9
=
4u
8
3u
7
+ 14u
6
18u
5
+ 13u
4
20u
3
2u
2
+ 14u + 4
3u
8
2u
7
+ 10u
6
13u
5
+ 7u
4
14u
3
4u
2
+ 13u + 5
a
10
=
7u
8
5u
7
+ 24u
6
31u
5
+ 20u
4
34u
3
6u
2
+ 27u + 9
3u
8
2u
7
+ 10u
6
13u
5
+ 7u
4
14u
3
4u
2
+ 13u + 5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 37u
8
21u
7
+ 123u
6
143u
5
+ 80u
4
154u
3
65u
2
+ 148u + 61
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
11u
8
+ ··· + 105u 25
c
2
u
9
+ 5u
8
+ 7u
7
3u
6
14u
5
4u
4
+ 13u
3
+ 8u
2
5u 5
c
3
, c
6
u
9
+ 3u
7
2u
6
3u
4
4u
3
+ 3u
2
+ 4u + 1
c
4
, c
9
u
9
+ 4u
7
4u
5
+ 7u
4
+ 3u
3
4u
2
+ u + 1
c
5
u
9
5u
8
+ 7u
7
+ 3u
6
14u
5
+ 4u
4
+ 13u
3
8u
2
5u + 5
c
7
, c
8
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 20u
5
+ 22u
4
+ 23u
3
+ 17u
2
+ 11u + 3
c
10
, c
12
u
9
+ u
8
+ 5u
7
+ 6u
6
+ 8u
5
u
3
3u
2
u 1
c
11
u
9
3u
8
+ 8u
7
13u
6
+ 20u
5
22u
4
+ 23u
3
17u
2
+ 11u 3
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
19y
8
+ ··· 675y 625
c
2
, c
5
y
9
11y
8
+ ··· + 105y 25
c
3
, c
6
y
9
+ 6y
8
+ 9y
7
12y
6
28y
5
+ 27y
4
+ 38y
3
35y
2
+ 10y 1
c
4
, c
9
y
9
+ 8y
8
+ 8y
7
26y
6
+ 42y
5
65y
4
+ 57y
3
24y
2
+ 9y 1
c
7
, c
8
, c
11
y
9
+ 7y
8
+ 26y
7
+ 65y
6
+ 116y
5
+ 152y
4
+ 143y
3
+ 85y
2
+ 19y 9
c
10
, c
12
y
9
+ 9y
8
+ 29y
7
+ 42y
6
+ 58y
5
+ 12y
4
3y
3
7y
2
5y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.060910 + 0.248265I
a = 0.603246 + 0.904793I
b = 1.060910 0.248265I
14.5038 + 1.7038I 5.12137 0.30387I
u = 1.060910 0.248265I
a = 0.603246 0.904793I
b = 1.060910 + 0.248265I
14.5038 1.7038I 5.12137 + 0.30387I
u = 0.513365 + 0.121815I
a = 0.35477 + 2.45080I
b = 0.513365 0.121815I
4.37176 + 2.01399I 7.44425 1.80958I
u = 0.513365 0.121815I
a = 0.35477 2.45080I
b = 0.513365 + 0.121815I
4.37176 2.01399I 7.44425 + 1.80958I
u = 0.12963 + 1.46755I
a = 0.724641 + 0.570324I
b = 0.12963 1.46755I
3.37793 0.60932I 0.678183 + 0.313757I
u = 0.12963 1.46755I
a = 0.724641 0.570324I
b = 0.12963 + 1.46755I
3.37793 + 0.60932I 0.678183 0.313757I
u = 0.524571
a = 0.862725
b = 0.524571
0.323696 2.44920
u = 0.41489 + 1.57652I
a = 0.404481 + 0.632682I
b = 0.41489 1.57652I
4.14493 + 5.44292I 3.66282 5.29674I
u = 0.41489 1.57652I
a = 0.404481 0.632682I
b = 0.41489 + 1.57652I
4.14493 5.44292I 3.66282 + 5.29674I
10
III.
I
u
3
= h8.06 × 10
4
u
11
4.75 × 10
5
u
10
+ · · · + 2.67 × 10
6
b 7.54 × 10
6
, 1.79 ×
10
6
u
11
1.20×10
5
u
10
+· · ·+2.94×10
7
a+6.96×10
7
, u
12
2u
11
+· · ·5u+11i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
8
=
0.0607854u
11
+ 0.00408601u
10
+ ··· 2.36373u 2.36536
0.0301237u
11
+ 0.177732u
10
+ ··· 1.72718u + 2.81991
a
7
=
0.0607854u
11
+ 0.00408601u
10
+ ··· 2.36373u 2.36536
0.0213565u
11
+ 0.254975u
10
+ ··· 1.64596u + 4.11224
a
6
=
0.0909091u
11
+ 0.181818u
10
+ ··· 4.09091u + 0.454545
0.0301237u
11
+ 0.177732u
10
+ ··· 0.727180u + 2.81991
a
2
=
0.256355u
11
0.482587u
10
+ ··· + 7.74069u + 0.445403
0.00489332u
11
0.0509161u
10
+ ··· 0.643385u 4.28738
a
1
=
0.251462u
11
0.533503u
10
+ ··· + 7.09731u 3.84198
0.00489332u
11
0.0509161u
10
+ ··· 0.643385u 4.28738
a
5
=
0.268729u
11
0.424867u
10
+ ··· + 9.92533u + 0.682260
0.0431217u
11
0.254037u
10
+ ··· 1.36716u 6.19453
a
11
=
0.0475752u
11
+ 0.137019u
10
+ ··· 1.83773u + 2.65443
0.108361u
11
0.141105u
10
+ ··· + 5.20146u 0.289069
a
9
=
0.107514u
11
0.277645u
10
+ ··· + 3.09999u 2.88464
0.159615u
11
+ 0.245201u
10
+ ··· 5.43439u 0.607579
a
10
=
0.0521010u
11
0.0324441u
10
+ ··· 2.33440u 3.49222
0.159615u
11
+ 0.245201u
10
+ ··· 5.43439u 0.607579
(ii) Obstruction class = 1
(iii) Cusp Shapes =
364002
2674873
u
11
239807
2674873
u
10
+ ··· +
14456768
2674873
u +
4628741
2674873
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 10u
5
+ 37u
4
+ 63u
3
+ 50u
2
+ 8u + 1)
2
c
2
, c
5
(u
6
2u
5
3u
4
+ 5u
3
+ 4u
2
4u + 1)
2
c
3
, c
6
u
12
2u
11
+ ··· 5u + 11
c
4
, c
9
u
12
+ 10u
10
+ ··· + 21u + 85
c
7
, c
8
, c
11
(u
6
u
5
+ 2u
4
u
3
+ 3u
2
u + 2)
2
c
10
, c
12
u
12
+ 3u
11
+ ··· + 34u + 97
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
26y
5
+ 209y
4
427y
3
+ 1566y
2
+ 36y + 1)
2
c
2
, c
5
(y
6
10y
5
+ 37y
4
63y
3
+ 50y
2
8y + 1)
2
c
3
, c
6
y
12
+ 4y
11
+ ··· + 965y + 121
c
4
, c
9
y
12
+ 20y
11
+ ··· + 4489y + 7225
c
7
, c
8
, c
11
(y
6
+ 3y
5
+ 8y
4
+ 13y
3
+ 15y
2
+ 11y + 4)
2
c
10
, c
12
y
12
+ 13y
11
+ ··· + 6410y + 9409
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.954376 + 0.767237I
a = 0.347916 + 0.700187I
b = 0.288553 1.211850I
1.32320 + 0.88172I 1.96296 1.82677I
u = 0.954376 0.767237I
a = 0.347916 0.700187I
b = 0.288553 + 1.211850I
1.32320 0.88172I 1.96296 + 1.82677I
u = 0.288553 + 1.211850I
a = 0.768435 0.013672I
b = 0.954376 0.767237I
1.32320 0.88172I 1.96296 + 1.82677I
u = 0.288553 1.211850I
a = 0.768435 + 0.013672I
b = 0.954376 + 0.767237I
1.32320 + 0.88172I 1.96296 1.82677I
u = 0.507879 + 1.312290I
a = 0.416941 + 0.844475I
b = 0.16044 1.50723I
3.57385 3.35669I 1.80671 + 2.26936I
u = 0.507879 1.312290I
a = 0.416941 0.844475I
b = 0.16044 + 1.50723I
3.57385 + 3.35669I 1.80671 2.26936I
u = 0.102054 + 0.545648I
a = 1.46225 1.37604I
b = 1.79344 0.39470I
12.94270 2.40920I 0.65626 + 2.92591I
u = 0.102054 0.545648I
a = 1.46225 + 1.37604I
b = 1.79344 + 0.39470I
12.94270 + 2.40920I 0.65626 2.92591I
u = 0.16044 + 1.50723I
a = 0.577713 + 0.656253I
b = 0.507879 1.312290I
3.57385 + 3.35669I 1.80671 2.26936I
u = 0.16044 1.50723I
a = 0.577713 0.656253I
b = 0.507879 + 1.312290I
3.57385 3.35669I 1.80671 + 2.26936I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.79344 + 0.39470I
a = 0.429775 + 0.428603I
b = 0.102054 0.545648I
12.94270 + 2.40920I 0.65626 2.92591I
u = 1.79344 0.39470I
a = 0.429775 0.428603I
b = 0.102054 + 0.545648I
12.94270 2.40920I 0.65626 + 2.92591I
15
IV. I
u
4
= hb u 1, a, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
12
=
0
u
a
4
=
1
u 1
a
8
=
0
u + 1
a
7
=
0
u + 1
a
6
=
u + 1
1
a
2
=
u
1
a
1
=
u 1
1
a
5
=
1
0
a
11
=
0
u
a
9
=
0
u + 1
a
10
=
u + 1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
c
12
(u 1)
2
c
3
, c
4
, c
6
c
9
u
2
+ u + 1
c
5
(u + 1)
2
c
7
, c
8
, c
11
u
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
, c
12
(y 1)
2
c
3
, c
4
, c
6
c
9
y
2
+ y + 1
c
7
, c
8
, c
11
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
0 3.00000
u = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
0 3.00000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
(u
6
+ 10u
5
+ 37u
4
+ 63u
3
+ 50u
2
+ 8u + 1)
2
· (u
9
11u
8
+ ··· + 105u 25)(u
15
+ 20u
14
+ ··· + 849u + 16)
c
2
(u 1)
2
(u
6
2u
5
3u
4
+ 5u
3
+ 4u
2
4u + 1)
2
· (u
9
+ 5u
8
+ 7u
7
3u
6
14u
5
4u
4
+ 13u
3
+ 8u
2
5u 5)
· (u
15
+ 8u
14
+ ··· + 23u 4)
c
3
, c
6
(u
2
+ u + 1)(u
9
+ 3u
7
2u
6
3u
4
4u
3
+ 3u
2
+ 4u + 1)
· (u
12
2u
11
+ ··· 5u + 11)(u
15
+ 10u
13
+ ··· + u
2
1)
c
4
, c
9
(u
2
+ u + 1)(u
9
+ 4u
7
4u
5
+ 7u
4
+ 3u
3
4u
2
+ u + 1)
· (u
12
+ 10u
10
+ ··· + 21u + 85)(u
15
+ 13u
13
+ ··· + u 1)
c
5
(u + 1)
2
(u
6
2u
5
3u
4
+ 5u
3
+ 4u
2
4u + 1)
2
· (u
9
5u
8
+ 7u
7
+ 3u
6
14u
5
+ 4u
4
+ 13u
3
8u
2
5u + 5)
· (u
15
+ 8u
14
+ ··· + 23u 4)
c
7
, c
8
u
2
(u
6
u
5
+ 2u
4
u
3
+ 3u
2
u + 2)
2
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 20u
5
+ 22u
4
+ 23u
3
+ 17u
2
+ 11u + 3)
· (u
15
+ 6u
14
+ ··· 5u 2)
c
10
, c
12
(u 1)
2
(u
9
+ u
8
+ 5u
7
+ 6u
6
+ 8u
5
u
3
3u
2
u 1)
· (u
12
+ 3u
11
+ ··· + 34u + 97)(u
15
u
14
+ ··· 11u 1)
c
11
u
2
(u
6
u
5
+ 2u
4
u
3
+ 3u
2
u + 2)
2
· (u
9
3u
8
+ 8u
7
13u
6
+ 20u
5
22u
4
+ 23u
3
17u
2
+ 11u 3)
· (u
15
+ 6u
14
+ ··· 5u 2)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
(y
6
26y
5
+ 209y
4
427y
3
+ 1566y
2
+ 36y + 1)
2
· (y
9
19y
8
+ ··· 675y 625)(y
15
44y
14
+ ··· + 606753y 256)
c
2
, c
5
(y 1)
2
(y
6
10y
5
+ 37y
4
63y
3
+ 50y
2
8y + 1)
2
· (y
9
11y
8
+ ··· + 105y 25)(y
15
20y
14
+ ··· + 849y 16)
c
3
, c
6
(y
2
+ y + 1)
· (y
9
+ 6y
8
+ 9y
7
12y
6
28y
5
+ 27y
4
+ 38y
3
35y
2
+ 10y 1)
· (y
12
+ 4y
11
+ ··· + 965y + 121)(y
15
+ 20y
14
+ ··· + 2y 1)
c
4
, c
9
(y
2
+ y + 1)
· (y
9
+ 8y
8
+ 8y
7
26y
6
+ 42y
5
65y
4
+ 57y
3
24y
2
+ 9y 1)
· (y
12
+ 20y
11
+ ··· + 4489y + 7225)(y
15
+ 26y
14
+ ··· 3y 1)
c
7
, c
8
, c
11
y
2
(y
6
+ 3y
5
+ 8y
4
+ 13y
3
+ 15y
2
+ 11y + 4)
2
· (y
9
+ 7y
8
+ 26y
7
+ 65y
6
+ 116y
5
+ 152y
4
+ 143y
3
+ 85y
2
+ 19y 9)
· (y
15
+ 10y
14
+ ··· 39y 4)
c
10
, c
12
((y 1)
2
)(y
9
+ 9y
8
+ ··· 5y 1)
· (y
12
+ 13y
11
+ ··· + 6410y + 9409)(y
15
+ 19y
14
+ ··· + 95y 1)
21