12n
0446
(K12n
0446
)
A knot diagram
1
Linearized knot diagam
3 5 9 11 2 4 12 3 7 5 10 8
Solving Sequence
5,10
11 12
4,7
6 9 3 2 1 8
c
10
c
11
c
4
c
6
c
9
c
3
c
2
c
1
c
8
c
5
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−9u
16
+ 75u
15
+ ··· + 4b + 48, 8u
16
+ 61u
15
+ ··· + 4a + 16, u
17
9u
16
+ ··· 16u + 8i
I
u
2
= hu
12
+ u
11
+ 3u
10
+ 2u
9
+ 7u
8
+ 4u
7
+ 9u
6
+ 3u
5
+ 9u
4
+ 2u
3
+ 5u
2
+ b + u + 2,
3u
13
3u
12
8u
11
5u
10
18u
9
10u
8
23u
7
8u
6
23u
5
6u
4
14u
3
4u
2
+ a 5u + 1,
u
14
+ u
13
+ 3u
12
+ 2u
11
+ 7u
10
+ 4u
9
+ 10u
8
+ 4u
7
+ 11u
6
+ 3u
5
+ 8u
4
+ 2u
3
+ 4u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9u
16
+ 75u
15
+ · · · + 4b + 48, 8u
16
+ 61u
15
+ · · · + 4a + 16, u
17
9u
16
+ · · · 16u + 8i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
12
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
7
=
2u
16
61
4
u
15
+ ··· +
53
4
u 4
9
4
u
16
75
4
u
15
+ ··· + 23u 12
a
6
=
3
2
u
16
+
45
4
u
15
+ ···
35
4
u + 2
17
4
u
16
+
151
4
u
15
+ ··· 51u + 34
a
9
=
15
8
u
16
117
8
u
15
+ ··· + 14u
5
2
9
4
u
16
77
4
u
15
+ ··· +
55
2
u 15
a
3
=
1
4
u
16
9
4
u
15
+ ··· +
7
2
u
5
2
1
2
u
15
+
7
2
u
14
+ ··· +
5
2
u 2
a
2
=
1
4
u
16
9
4
u
15
+ ··· +
7
2
u
5
2
1
2
u
16
+ 3u
15
+ ··· +
1
2
u 2
a
1
=
13
8
u
16
+
119
8
u
15
+ ··· 22u +
31
2
5
4
u
16
29
4
u
15
+ ···
3
2
u + 11
a
8
=
9
4
u
16
18u
15
+ ··· +
73
4
u 6
9
4
u
16
79
4
u
15
+ ··· + 29u 16
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
16
+ 48u
15
204u
14
+ 579u
13
1201u
12
+ 1920u
11
2456u
10
+ 2621u
9
2430u
8
+ 2003u
7
1452u
6
+ 891u
5
445u
4
+ 148u
3
+ 6u
2
44u + 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
22u
16
+ ··· + 54u 1
c
2
, c
5
u
17
+ 2u
16
+ ··· 2u + 1
c
3
, c
8
u
17
u
16
+ ··· u + 1
c
4
, c
10
u
17
9u
16
+ ··· 16u + 8
c
6
u
17
+ 4u
16
+ ··· + 24694u + 2511
c
7
, c
12
u
17
+ 7u
15
+ ··· 226u + 111
c
9
u
17
3u
16
+ ··· 4u + 1
c
11
u
17
5u
16
+ ··· + 160u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
+ 62y
16
+ ··· + 426y 1
c
2
, c
5
y
17
22y
16
+ ··· + 54y 1
c
3
, c
8
y
17
+ 21y
16
+ ··· 7y 1
c
4
, c
10
y
17
+ 5y
16
+ ··· + 160y 64
c
6
y
17
22y
16
+ ··· + 769543456y 6305121
c
7
, c
12
y
17
+ 14y
16
+ ··· 22850y 12321
c
9
y
17
3y
16
+ ··· + 10y 1
c
11
y
17
+ 13y
16
+ ··· + 156160y 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.743107 + 0.737300I
a = 0.957729 + 0.743386I
b = 1.065040 + 0.659072I
3.59959 + 0.58481I 8.87613 + 1.72757I
u = 0.743107 0.737300I
a = 0.957729 0.743386I
b = 1.065040 0.659072I
3.59959 0.58481I 8.87613 1.72757I
u = 0.072889 + 0.887618I
a = 0.312452 0.912707I
b = 0.304982 + 0.710279I
1.67215 + 1.49188I 1.61333 4.98502I
u = 0.072889 0.887618I
a = 0.312452 + 0.912707I
b = 0.304982 0.710279I
1.67215 1.49188I 1.61333 + 4.98502I
u = 0.474839 + 0.714353I
a = 1.293010 + 0.446550I
b = 0.470362 0.202610I
0.29498 + 1.80975I 2.70110 3.65617I
u = 0.474839 0.714353I
a = 1.293010 0.446550I
b = 0.470362 + 0.202610I
0.29498 1.80975I 2.70110 + 3.65617I
u = 0.699430 + 0.964772I
a = 1.65451 + 0.74282I
b = 1.001640 0.878315I
2.90799 6.08549I 5.32420 + 3.68722I
u = 0.699430 0.964772I
a = 1.65451 0.74282I
b = 1.001640 + 0.878315I
2.90799 + 6.08549I 5.32420 3.68722I
u = 0.864249 + 0.915420I
a = 1.71758 0.46850I
b = 0.779025 + 0.016840I
7.95991 3.20234I 15.1724 + 0.4148I
u = 0.864249 0.915420I
a = 1.71758 + 0.46850I
b = 0.779025 0.016840I
7.95991 + 3.20234I 15.1724 0.4148I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.408880 + 0.063065I
a = 1.183850 0.166931I
b = 0.955388 0.931462I
6.30330 + 3.42896I 6.06062 2.16109I
u = 1.408880 0.063065I
a = 1.183850 + 0.166931I
b = 0.955388 + 0.931462I
6.30330 3.42896I 6.06062 + 2.16109I
u = 0.395985
a = 0.300112
b = 0.572653
0.874933 11.5210
u = 0.72984 + 1.44188I
a = 0.168023 0.244503I
b = 0.909775 1.029340I
10.83540 3.92897I 4.57004 + 0.99423I
u = 0.72984 1.44188I
a = 0.168023 + 0.244503I
b = 0.909775 + 1.029340I
10.83540 + 3.92897I 4.57004 0.99423I
u = 0.80021 + 1.43594I
a = 1.33738 0.75405I
b = 1.043440 + 0.934400I
10.3710 11.0996I 5.14830 + 4.90846I
u = 0.80021 1.43594I
a = 1.33738 + 0.75405I
b = 1.043440 0.934400I
10.3710 + 11.0996I 5.14830 4.90846I
6
II.
I
u
2
= hu
12
+u
11
+· · ·+b+2, 3u
13
3u
12
+· · ·+a+1, u
14
+u
13
+· · ·+4u
2
+1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
12
=
u
2
+ 1
u
2
a
4
=
u
u
3
+ u
a
7
=
3u
13
+ 3u
12
+ ··· + 5u 1
u
12
u
11
+ ··· u 2
a
6
=
2u
13
+ 2u
12
+ ··· + 3u 2
u
13
2u
12
+ ··· 2u 3
a
9
=
2u
13
+ 2u
12
+ ··· + 2u 3
u
12
2u
11
+ ··· 3u 2
a
3
=
u
12
+ u
11
+ ··· + 2u + 3
u
13
+ u
12
+ ··· + u
2
+ 4u
a
2
=
u
12
+ u
11
+ ··· + 2u + 3
u
13
+ u
12
+ ··· + 4u 1
a
1
=
2u
13
2u
12
+ ··· 5u + 1
u
13
u
12
+ ··· 3u
2
+ u
a
8
=
2u
13
+ 3u
12
+ ··· + 4u 1
u
12
u
11
+ ··· 8u
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
13
+3u
12
+2u
11
+12u
10
+9u
9
+32u
8
+21u
7
+42u
6
+25u
5
+45u
4
+22u
3
+24u
2
+10u
7
(iv) u-Polynomials at the component
8
Crossings u-Polynomials at each crossing
c
1
u
14
11u
13
+ ··· 4u + 1
c
2
u
14
+ u
13
+ 6u
12
+ 4u
11
+ 9u
10
+ 3u
8
5u
7
4u
5
+ 2u
4
u
3
+ 2u
2
+ 1
c
3
u
14
5u
12
+ 9u
10
2u
9
6u
8
+ 6u
7
7u
5
+ 4u
4
+ 4u
3
3u
2
u + 1
c
4
u
14
u
13
+ ··· + 4u
2
+ 1
c
5
u
14
u
13
+ 6u
12
4u
11
+ 9u
10
+ 3u
8
+ 5u
7
+ 4u
5
+ 2u
4
+ u
3
+ 2u
2
+ 1
c
6
u
14
u
13
+ ··· + 8u + 67
c
7
u
14
u
13
+ ··· + 4u + 1
c
8
u
14
5u
12
+ 9u
10
+ 2u
9
6u
8
6u
7
+ 7u
5
+ 4u
4
4u
3
3u
2
+ u + 1
c
9
u
14
+ 6u
13
+ ··· + 4u + 1
c
10
u
14
+ u
13
+ ··· + 4u
2
+ 1
c
11
u
14
5u
13
+ ··· 8u + 1
c
12
u
14
+ u
13
+ ··· 4u + 1
9
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
29y
13
+ ··· + 12y
2
+ 1
c
2
, c
5
y
14
+ 11y
13
+ ··· + 4y + 1
c
3
, c
8
y
14
10y
13
+ ··· 7y + 1
c
4
, c
10
y
14
+ 5y
13
+ ··· + 8y + 1
c
6
y
14
+ 11y
13
+ ··· 466y + 4489
c
7
, c
12
y
14
13y
13
+ ··· 4y + 1
c
9
y
14
2y
13
+ ··· 8y + 1
c
11
y
14
+ 13y
13
+ ··· + 32y
2
+ 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.105110 + 0.959669I
a = 0.448698 0.035015I
b = 0.594085 + 0.956154I
0.09953 + 1.96463I 3.48083 3.91633I
u = 0.105110 0.959669I
a = 0.448698 + 0.035015I
b = 0.594085 0.956154I
0.09953 1.96463I 3.48083 + 3.91633I
u = 0.694518 + 0.776039I
a = 0.573318 + 1.021770I
b = 1.16230 + 0.95610I
3.84339 + 1.43715I 12.12204 5.82210I
u = 0.694518 0.776039I
a = 0.573318 1.021770I
b = 1.16230 0.95610I
3.84339 1.43715I 12.12204 + 5.82210I
u = 0.584040 + 0.656749I
a = 0.75333 1.27705I
b = 0.796480 + 0.277469I
6.62904 + 0.87099I 9.32156 + 1.93932I
u = 0.584040 0.656749I
a = 0.75333 + 1.27705I
b = 0.796480 0.277469I
6.62904 0.87099I 9.32156 1.93932I
u = 0.672935 + 0.942423I
a = 1.78530 + 0.66319I
b = 1.09781 1.12323I
3.32221 6.71387I 11.7069 + 12.3294I
u = 0.672935 0.942423I
a = 1.78530 0.66319I
b = 1.09781 + 1.12323I
3.32221 + 6.71387I 11.7069 12.3294I
u = 0.645970 + 1.039580I
a = 0.263318 + 0.909593I
b = 0.491954 0.568665I
5.34937 + 4.06327I 5.63140 4.63388I
u = 0.645970 1.039580I
a = 0.263318 0.909593I
b = 0.491954 + 0.568665I
5.34937 4.06327I 5.63140 + 4.63388I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.925465 + 0.908624I
a = 1.45765 0.16567I
b = 0.528256 + 0.113442I
7.43274 + 3.38328I 1.12875 4.65800I
u = 0.925465 0.908624I
a = 1.45765 + 0.16567I
b = 0.528256 0.113442I
7.43274 3.38328I 1.12875 + 4.65800I
u = 0.182913 + 0.587851I
a = 2.14907 + 1.62071I
b = 0.905989 0.618123I
1.48665 3.24685I 5.60851 + 4.03314I
u = 0.182913 0.587851I
a = 2.14907 1.62071I
b = 0.905989 + 0.618123I
1.48665 + 3.24685I 5.60851 4.03314I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
14
11u
13
+ ··· 4u + 1)(u
17
22u
16
+ ··· + 54u 1)
c
2
(u
14
+ u
13
+ 6u
12
+ 4u
11
+ 9u
10
+ 3u
8
5u
7
4u
5
+ 2u
4
u
3
+ 2u
2
+ 1)
· (u
17
+ 2u
16
+ ··· 2u + 1)
c
3
(u
14
5u
12
+ 9u
10
2u
9
6u
8
+ 6u
7
7u
5
+ 4u
4
+ 4u
3
3u
2
u + 1)
· (u
17
u
16
+ ··· u + 1)
c
4
(u
14
u
13
+ ··· + 4u
2
+ 1)(u
17
9u
16
+ ··· 16u + 8)
c
5
(u
14
u
13
+ 6u
12
4u
11
+ 9u
10
+ 3u
8
+ 5u
7
+ 4u
5
+ 2u
4
+ u
3
+ 2u
2
+ 1)
· (u
17
+ 2u
16
+ ··· 2u + 1)
c
6
(u
14
u
13
+ ··· + 8u + 67)(u
17
+ 4u
16
+ ··· + 24694u + 2511)
c
7
(u
14
u
13
+ ··· + 4u + 1)(u
17
+ 7u
15
+ ··· 226u + 111)
c
8
(u
14
5u
12
+ 9u
10
+ 2u
9
6u
8
6u
7
+ 7u
5
+ 4u
4
4u
3
3u
2
+ u + 1)
· (u
17
u
16
+ ··· u + 1)
c
9
(u
14
+ 6u
13
+ ··· + 4u + 1)(u
17
3u
16
+ ··· 4u + 1)
c
10
(u
14
+ u
13
+ ··· + 4u
2
+ 1)(u
17
9u
16
+ ··· 16u + 8)
c
11
(u
14
5u
13
+ ··· 8u + 1)(u
17
5u
16
+ ··· + 160u + 64)
c
12
(u
14
+ u
13
+ ··· 4u + 1)(u
17
+ 7u
15
+ ··· 226u + 111)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
14
29y
13
+ ··· + 12y
2
+ 1)(y
17
+ 62y
16
+ ··· + 426y 1)
c
2
, c
5
(y
14
+ 11y
13
+ ··· + 4y + 1)(y
17
22y
16
+ ··· + 54y 1)
c
3
, c
8
(y
14
10y
13
+ ··· 7y + 1)(y
17
+ 21y
16
+ ··· 7y 1)
c
4
, c
10
(y
14
+ 5y
13
+ ··· + 8y + 1)(y
17
+ 5y
16
+ ··· + 160y 64)
c
6
(y
14
+ 11y
13
+ ··· 466y + 4489)
· (y
17
22y
16
+ ··· + 769543456y 6305121)
c
7
, c
12
(y
14
13y
13
+ ··· 4y + 1)(y
17
+ 14y
16
+ ··· 22850y 12321)
c
9
(y
14
2y
13
+ ··· 8y + 1)(y
17
3y
16
+ ··· + 10y 1)
c
11
(y
14
+ 13y
13
+ ··· + 32y
2
+ 1)(y
17
+ 13y
16
+ ··· + 156160y 4096)
15