12n
0450
(K12n
0450
)
A knot diagram
1
Linearized knot diagam
3 6 12 11 2 11 1 4 3 1 9 8
Solving Sequence
4,8 9,12
1 3 2 7 11 5 6 10
c
8
c
12
c
3
c
1
c
7
c
11
c
4
c
6
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.60444 × 10
22
u
28
+ 2.55663 × 10
22
u
27
+ ··· + 2.54971 × 10
22
b 4.79237 × 10
21
, a 1,
u
29
2u
28
+ ··· 3u + 1i
I
u
2
= h−101u
19
+ 163u
18
+ ··· + 83b 171, a + 1, u
20
+ u
19
+ ··· 2u + 1i
I
u
3
= h−3.73965 × 10
51
u
39
8.54778 × 10
51
u
38
+ ··· + 4.04316 × 10
50
b + 1.36063 × 10
52
,
3.50215 × 10
83
u
39
8.75016 × 10
83
u
38
+ ··· + 9.39462 × 10
81
a + 3.79380 × 10
83
,
u
40
+ 2u
39
+ ··· 13u + 1i
I
u
4
= h−u
3
2u
2
+ 2b 2u + 1, u
3
+ 2a 5, u
4
+ u
3
+ 2u
2
u + 1i
I
u
5
= hb + u + 1, a 1, u
2
+ u + 1i
* 5 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.60 × 10
22
u
28
+ 2.56 × 10
22
u
27
+ · · · + 2.55 × 10
22
b 4.79 ×
10
21
, a 1, u
29
2u
28
+ · · · 3u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
1
0.629264u
28
1.00271u
27
+ ··· + 4.09043u + 0.187957
a
1
=
0.629264u
28
1.00271u
27
+ ··· + 4.09043u + 1.18796
0.629264u
28
1.00271u
27
+ ··· + 4.09043u + 0.187957
a
3
=
u
0.255815u
28
0.468311u
27
+ ··· + 3.07575u 0.629264
a
2
=
0.572071u
28
0.965425u
27
+ ··· + 3.54331u + 0.766462
0.0578442u
28
0.0712994u
27
+ ··· + 0.481981u + 0.447834
a
7
=
1.81161u
28
3.20172u
27
+ ··· + 12.3104u 1.73946
1.18234u
28
2.19901u
27
+ ··· + 8.21997u 2.92741
a
11
=
0.629264u
28
1.00271u
27
+ ··· + 4.09043u + 1.18796
0.672582u
28
1.03859u
27
+ ··· + 4.22861u 0.0678573
a
5
=
0.575794u
28
1.20888u
27
+ ··· + 6.02284u 2.35424
0.299202u
28
0.691078u
27
+ ··· + 3.19943u 1.66768
a
6
=
1.13473u
28
2.13653u
27
+ ··· + 8.11688u 1.69516
0.493538u
28
1.13834u
27
+ ··· + 4.35556u 1.96801
a
10
=
0.0433177u
28
+ 0.0358776u
27
+ ··· 0.138180u + 1.25581
0.0355816u
28
0.0476050u
27
+ ··· + 0.517900u + 0.626552
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1968133132746250507567
25497116697596300834899
u
28
+
51952197439902261991497
25497116697596300834899
u
27
+ ···
276922517104029225550000
25497116697596300834899
u +
47895990870458513606664
25497116697596300834899
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
29
+ 9u
28
+ ··· 861u + 441
c
2
, c
5
u
29
+ 9u
28
+ ··· + 105u + 21
c
3
, c
8
u
29
2u
28
+ ··· 3u + 1
c
4
, c
9
u
29
u
28
+ ··· + 19u + 17
c
6
, c
10
u
29
+ 3u
28
+ ··· + 29u + 1
c
7
, c
12
u
29
18u
28
+ ··· 2560u + 512
c
11
u
29
18u
28
+ ··· + 294u 21
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
29
+ 31y
28
+ ··· + 2190447y 194481
c
2
, c
5
y
29
9y
28
+ ··· 861y 441
c
3
, c
8
y
29
+ 28y
27
+ ··· 11y 1
c
4
, c
9
y
29
15y
28
+ ··· + 3183y 289
c
6
, c
10
y
29
+ 45y
28
+ ··· + 331y 1
c
7
, c
12
y
29
+ 12y
28
+ ··· + 7864320y 262144
c
11
y
29
+ 4y
28
+ ··· + 1344y 441
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.553569 + 0.834452I
a = 1.00000
b = 1.086080 0.257296I
1.07593 + 3.51673I 0.88547 6.06083I
u = 0.553569 0.834452I
a = 1.00000
b = 1.086080 + 0.257296I
1.07593 3.51673I 0.88547 + 6.06083I
u = 0.898744 + 0.481411I
a = 1.00000
b = 1.04286 1.29908I
4.54760 + 1.43626I 5.55282 2.76214I
u = 0.898744 0.481411I
a = 1.00000
b = 1.04286 + 1.29908I
4.54760 1.43626I 5.55282 + 2.76214I
u = 0.885586 + 0.378627I
a = 1.00000
b = 1.05204 + 1.35554I
4.49815 7.86181I 6.63470 + 7.85058I
u = 0.885586 0.378627I
a = 1.00000
b = 1.05204 1.35554I
4.49815 + 7.86181I 6.63470 7.85058I
u = 0.390658 + 0.859931I
a = 1.00000
b = 0.766543 0.146226I
2.79783 + 0.59845I 2.09571 1.89566I
u = 0.390658 0.859931I
a = 1.00000
b = 0.766543 + 0.146226I
2.79783 0.59845I 2.09571 + 1.89566I
u = 0.631994 + 0.882834I
a = 1.00000
b = 1.47686 + 0.36781I
9.81309 + 8.93318I 1.43468 7.09429I
u = 0.631994 0.882834I
a = 1.00000
b = 1.47686 0.36781I
9.81309 8.93318I 1.43468 + 7.09429I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.622317 + 0.918963I
a = 1.00000
b = 1.37238 0.35412I
10.54740 2.08899I 0.28693 + 2.13318I
u = 0.622317 0.918963I
a = 1.00000
b = 1.37238 + 0.35412I
10.54740 + 2.08899I 0.28693 2.13318I
u = 0.246064 + 0.681299I
a = 1.00000
b = 0.291258 0.850239I
0.06368 + 1.78512I 1.17437 4.76019I
u = 0.246064 0.681299I
a = 1.00000
b = 0.291258 + 0.850239I
0.06368 1.78512I 1.17437 + 4.76019I
u = 1.040160 + 0.774644I
a = 1.00000
b = 0.003744 + 1.185610I
4.83952 + 0.52966I 8.94722 4.42653I
u = 1.040160 0.774644I
a = 1.00000
b = 0.003744 1.185610I
4.83952 0.52966I 8.94722 + 4.42653I
u = 0.662685
a = 1.00000
b = 0.179578
1.45974 5.50510
u = 0.954244 + 0.980591I
a = 1.00000
b = 0.384074 1.189700I
0.41230 + 3.60972I 1.66995 2.14870I
u = 0.954244 0.980591I
a = 1.00000
b = 0.384074 + 1.189700I
0.41230 3.60972I 1.66995 + 2.14870I
u = 0.447072 + 0.358702I
a = 1.00000
b = 0.44229 + 1.60778I
2.94431 4.31709I 9.8550 + 12.7269I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.447072 0.358702I
a = 1.00000
b = 0.44229 1.60778I
2.94431 + 4.31709I 9.8550 12.7269I
u = 1.08646 + 1.01922I
a = 1.00000
b = 0.47265 + 1.42228I
4.10333 8.99973I 2.77388 + 6.56416I
u = 1.08646 1.01922I
a = 1.00000
b = 0.47265 1.42228I
4.10333 + 8.99973I 2.77388 6.56416I
u = 1.16230 + 1.12800I
a = 1.00000
b = 0.74251 1.33081I
7.38506 + 9.34813I 2.85483 4.48281I
u = 1.16230 1.12800I
a = 1.00000
b = 0.74251 + 1.33081I
7.38506 9.34813I 2.85483 + 4.48281I
u = 0.117027 + 0.360629I
a = 1.00000
b = 0.817618 + 0.957619I
2.13866 + 1.52424I 4.33983 3.48956I
u = 0.117027 0.360629I
a = 1.00000
b = 0.817618 0.957619I
2.13866 1.52424I 4.33983 + 3.48956I
u = 1.18898 + 1.11285I
a = 1.00000
b = 0.78159 + 1.34575I
6.6428 16.5676I 4.00000 + 8.49370I
u = 1.18898 1.11285I
a = 1.00000
b = 0.78159 1.34575I
6.6428 + 16.5676I 4.00000 8.49370I
7
II. I
u
2
= h−101u
19
+ 163u
18
+ · · · + 83b 171, a + 1, u
20
+ u
19
+ · · · 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
1
1.21687u
19
1.96386u
18
+ ··· 10.1928u + 2.06024
a
1
=
1.21687u
19
1.96386u
18
+ ··· 10.1928u + 1.06024
1.21687u
19
1.96386u
18
+ ··· 10.1928u + 2.06024
a
3
=
u
3.18072u
19
+ 2.53012u
18
+ ··· 3.49398u + 1.21687
a
2
=
2.16867u
19
2.63855u
18
+ ··· 15.9277u + 4.60241
2.15663u
19
3.80723u
18
+ ··· 19.3614u + 8.98795
a
7
=
1.34940u
19
+ 4.89157u
18
+ ··· + 7.57831u 11.1807
2.56627u
19
+ 2.92771u
18
+ ··· 2.61446u 10.1205
a
11
=
1.21687u
19
1.96386u
18
+ ··· 10.1928u + 1.06024
1.86747u
19
3.85542u
18
+ ··· 17.7711u + 5.24096
a
5
=
1.63855u
19
+ 1.93976u
18
+ ··· 4.01205u 1.43373
0.626506u
19
+ 0.228916u
18
+ ··· 0.554217u 2.95181
a
6
=
0.168675u
19
+ 5.63855u
18
+ ··· + 15.9277u 10.6024
0.156627u
19
+ 6.80723u
18
+ ··· + 19.3614u 15.9880
a
10
=
0.650602u
19
1.89157u
18
+ ··· 7.57831u + 4.18072
0.650602u
19
1.89157u
18
+ ··· 7.57831u + 4.18072
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1728
83
u
19
2529
83
u
18
+ ···
290
83
u
148
83
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
8u
19
+ ··· 10u + 1
c
2
u
20
+ 4u
19
+ ··· + 4u + 1
c
3
, c
8
u
20
+ u
19
+ ··· 2u + 1
c
4
, c
9
u
20
3u
18
+ ··· 4u + 5
c
5
u
20
4u
19
+ ··· 4u + 1
c
6
, c
10
u
20
2u
19
+ ··· + 2u + 1
c
7
u
20
6u
19
+ ··· 11u + 5
c
11
u
20
+ 13u
19
+ ··· + 125u + 25
c
12
u
20
+ 6u
19
+ ··· + 11u + 5
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 16y
19
+ ··· + 14y + 1
c
2
, c
5
y
20
8y
19
+ ··· 10y + 1
c
3
, c
8
y
20
7y
19
+ ··· 16y + 1
c
4
, c
9
y
20
6y
19
+ ··· + 314y + 25
c
6
, c
10
y
20
+ 6y
19
+ ··· 14y + 1
c
7
, c
12
y
20
+ 12y
19
+ ··· + 329y + 25
c
11
y
20
+ y
19
+ ··· + 1525y + 625
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.749177 + 0.792993I
a = 1.00000
b = 0.461335 0.696929I
7.15083 + 6.18840I 3.23960 2.72855I
u = 0.749177 0.792993I
a = 1.00000
b = 0.461335 + 0.696929I
7.15083 6.18840I 3.23960 + 2.72855I
u = 0.856996 + 0.013947I
a = 1.00000
b = 0.097835 + 0.598647I
2.80631 0.60538I 10.53109 0.51236I
u = 0.856996 0.013947I
a = 1.00000
b = 0.097835 0.598647I
2.80631 + 0.60538I 10.53109 + 0.51236I
u = 0.838006 + 0.822643I
a = 1.00000
b = 0.378604 + 0.720129I
7.53299 + 0.99079I 2.61556 1.90284I
u = 0.838006 0.822643I
a = 1.00000
b = 0.378604 0.720129I
7.53299 0.99079I 2.61556 + 1.90284I
u = 0.665108 + 0.324125I
a = 1.00000
b = 1.117190 0.608940I
1.83782 + 3.01831I 10.5178 9.5148I
u = 0.665108 0.324125I
a = 1.00000
b = 1.117190 + 0.608940I
1.83782 3.01831I 10.5178 + 9.5148I
u = 1.081860 + 0.842780I
a = 1.00000
b = 0.605583 + 0.877015I
2.54111 + 5.42929I 4.17139 2.92908I
u = 1.081860 0.842780I
a = 1.00000
b = 0.605583 0.877015I
2.54111 5.42929I 4.17139 + 2.92908I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.126260 + 0.824230I
a = 1.00000
b = 0.055343 1.135190I
4.70013 0.25170I 6.72415 + 4.83979I
u = 1.126260 0.824230I
a = 1.00000
b = 0.055343 + 1.135190I
4.70013 + 0.25170I 6.72415 4.83979I
u = 0.582150 + 0.090727I
a = 1.00000
b = 0.015486 1.370700I
3.30705 + 3.54726I 12.80442 5.42208I
u = 0.582150 0.090727I
a = 1.00000
b = 0.015486 + 1.370700I
3.30705 3.54726I 12.80442 + 5.42208I
u = 1.11790 + 0.86654I
a = 1.00000
b = 0.225749 + 0.939626I
1.68131 + 5.33977I 5.49082 5.51223I
u = 1.11790 0.86654I
a = 1.00000
b = 0.225749 0.939626I
1.68131 5.33977I 5.49082 + 5.51223I
u = 1.11605 + 0.91718I
a = 1.00000
b = 0.51806 1.34055I
5.18149 8.81978I 10.79868 + 6.59356I
u = 1.11605 0.91718I
a = 1.00000
b = 0.51806 + 1.34055I
5.18149 + 8.81978I 10.79868 6.59356I
u = 0.486237 + 0.221311I
a = 1.00000
b = 1.31538 + 1.29746I
2.49821 + 1.18090I 17.1065 + 7.0501I
u = 0.486237 0.221311I
a = 1.00000
b = 1.31538 1.29746I
2.49821 1.18090I 17.1065 7.0501I
12
III. I
u
3
= h−3.74 × 10
51
u
39
8.55 × 10
51
u
38
+ · · · + 4.04 × 10
50
b + 1.36 ×
10
52
, 3.50 × 10
83
u
39
8.75 × 10
83
u
38
+ · · · + 9.39 × 10
81
a + 3.79 ×
10
83
, u
40
+ 2u
39
+ · · · 13u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
37.2782u
39
+ 93.1401u
38
+ ··· + 658.285u 40.3827
9.24932u
39
+ 21.1413u
38
+ ··· + 315.076u 33.6527
a
1
=
46.5275u
39
+ 114.281u
38
+ ··· + 973.362u 74.0354
9.24932u
39
+ 21.1413u
38
+ ··· + 315.076u 33.6527
a
3
=
30.1491u
39
+ 59.6821u
38
+ ··· + 1673.11u 208.172
31.8912u
39
+ 73.1587u
38
+ ··· + 1019.79u 101.577
a
2
=
15.0952u
39
+ 42.4578u
38
+ ··· 102.381u + 42.5474
14.6995u
39
33.0619u
38
+ ··· 518.350u + 54.3768
a
7
=
110.826u
39
+ 256.187u
38
+ ··· + 3415.02u 335.365
9.24932u
39
+ 21.1413u
38
+ ··· + 315.076u 34.6527
a
11
=
38.9331u
39
+ 96.3096u
38
+ ··· + 769.052u 55.4517
9.11106u
39
+ 20.8265u
38
+ ··· + 311.597u 33.5123
a
5
=
96.4146u
39
+ 213.222u
38
+ ··· + 3675.88u 401.553
35.0020u
39
+ 80.3933u
38
+ ··· + 1115.52u 111.581
a
6
=
85.2631u
39
+ 194.465u
38
+ ··· + 2845.50u 291.046
14.2530u
39
+ 33.9549u
38
+ ··· + 366.582u 31.9756
a
10
=
17.9587u
39
38.4998u
38
+ ··· 749.953u + 80.2253
16.5567u
39
+ 36.5186u
38
+ ··· + 649.966u 72.1059
(ii) Obstruction class = 1
(iii) Cusp Shapes = 32.1094u
39
+ 63.6905u
38
+ ··· + 1775.28u 226.798
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
10
+ 2u
9
+ 9u
8
+ 15u
7
+ 28u
6
+ 36u
5
+ 35u
4
+ 22u
3
+ 15u
2
+ 6u + 1)
4
c
2
, c
5
(u
10
2u
9
+ u
8
+ 3u
7
2u
6
2u
5
+ 3u
4
+ 2u
3
u
2
2u + 1)
4
c
3
, c
8
u
40
+ 2u
39
+ ··· 13u + 1
c
4
, c
9
u
40
+ 2u
39
+ ··· + 556819u + 78541
c
6
, c
10
u
40
3u
39
+ ··· + 59250u + 16729
c
7
, c
12
(u
2
+ u + 1)
20
c
11
(u
10
+ 3u
9
+ 6u
8
+ 7u
7
+ 9u
6
+ 9u
5
+ 10u
4
+ 6u
3
+ 5u
2
+ 3u + 2)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
10
+ 14y
9
+ ··· 6y + 1)
4
c
2
, c
5
(y
10
2y
9
+ 9y
8
15y
7
+ 28y
6
36y
5
+ 35y
4
22y
3
+ 15y
2
6y + 1)
4
c
3
, c
8
y
40
6y
39
+ ··· 41y + 1
c
4
, c
9
y
40
18y
39
+ ··· + 798086907y + 6168688681
c
6
, c
10
y
40
+ 41y
39
+ ··· + 1832579726y + 279859441
c
7
, c
12
(y
2
+ y + 1)
20
c
11
(y
10
+ 3y
9
+ ··· + 11y + 4)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.180275 + 0.992664I
a = 0.000968 0.299992I
b = 0.500000 + 0.866025I
2.22682 + 1.42904I 7.31849 0.06369I
u = 0.180275 0.992664I
a = 0.000968 + 0.299992I
b = 0.500000 0.866025I
2.22682 1.42904I 7.31849 + 0.06369I
u = 0.825169 + 0.581665I
a = 0.269230 0.089195I
b = 0.500000 0.866025I
0.55514 + 2.55647I 1.79322 3.96020I
u = 0.825169 0.581665I
a = 0.269230 + 0.089195I
b = 0.500000 + 0.866025I
0.55514 2.55647I 1.79322 + 3.96020I
u = 0.927681 + 0.025135I
a = 0.677736 0.206020I
b = 0.500000 + 0.866025I
3.21269 1.90262I 14.2791 + 3.2498I
u = 0.927681 0.025135I
a = 0.677736 + 0.206020I
b = 0.500000 0.866025I
3.21269 + 1.90262I 14.2791 3.2498I
u = 0.150588 + 1.186930I
a = 0.279685 1.340970I
b = 0.500000 + 0.866025I
7.82170 + 3.78328I 0. 2.61377I
u = 0.150588 1.186930I
a = 0.279685 + 1.340970I
b = 0.500000 0.866025I
7.82170 3.78328I 0. + 2.61377I
u = 0.510475 + 0.619539I
a = 2.17116 + 0.59425I
b = 0.500000 0.866025I
2.22682 2.63073I 7.31849 + 6.86451I
u = 0.510475 0.619539I
a = 2.17116 0.59425I
b = 0.500000 + 0.866025I
2.22682 + 2.63073I 7.31849 6.86451I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.332577 + 1.177620I
a = 0.010519 + 1.274250I
b = 0.500000 0.866025I
7.22009 + 3.33409I 4.00000 3.04149I
u = 0.332577 1.177620I
a = 0.010519 1.274250I
b = 0.500000 + 0.866025I
7.22009 3.33409I 4.00000 + 3.04149I
u = 0.693076 + 1.011640I
a = 1.172690 0.580972I
b = 0.500000 + 0.866025I
0.55514 + 6.61623I 0. 10.88840I
u = 0.693076 1.011640I
a = 1.172690 + 0.580972I
b = 0.500000 0.866025I
0.55514 6.61623I 0. + 10.88840I
u = 1.110860 + 0.660478I
a = 1.157050 0.225323I
b = 0.500000 0.866025I
3.21269 5.96239I 14.2791 + 10.1780I
u = 1.110860 0.660478I
a = 1.157050 + 0.225323I
b = 0.500000 + 0.866025I
3.21269 + 5.96239I 14.2791 10.1780I
u = 0.633901 + 0.174086I
a = 1.350690 + 0.410587I
b = 0.500000 + 0.866025I
3.21269 1.90262I 14.2791 + 3.2498I
u = 0.633901 0.174086I
a = 1.350690 0.410587I
b = 0.500000 0.866025I
3.21269 + 1.90262I 14.2791 3.2498I
u = 0.353320 + 0.370137I
a = 0.61494 3.83881I
b = 0.500000 0.866025I
7.22009 7.39385I 2.50388 + 9.96969I
u = 0.353320 0.370137I
a = 0.61494 + 3.83881I
b = 0.500000 + 0.866025I
7.22009 + 7.39385I 2.50388 9.96969I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.13650 + 1.01451I
a = 0.832688 0.162157I
b = 0.500000 + 0.866025I
3.21269 + 5.96239I 0
u = 1.13650 1.01451I
a = 0.832688 + 0.162157I
b = 0.500000 0.866025I
3.21269 5.96239I 0
u = 0.264091 + 0.371106I
a = 1.24764 + 3.99076I
b = 0.500000 + 0.866025I
7.82170 + 0.27648I 0.60526 4.31443I
u = 0.264091 0.371106I
a = 1.24764 3.99076I
b = 0.500000 0.866025I
7.82170 0.27648I 0.60526 + 4.31443I
u = 1.49707 + 0.43617I
a = 0.006478 + 0.784725I
b = 0.500000 + 0.866025I
7.22009 3.33409I 0
u = 1.49707 0.43617I
a = 0.006478 0.784725I
b = 0.500000 0.866025I
7.22009 + 3.33409I 0
u = 1.40050 + 0.78368I
a = 0.684691 0.339208I
b = 0.500000 0.866025I
0.55514 6.61623I 0
u = 1.40050 0.78368I
a = 0.684691 + 0.339208I
b = 0.500000 + 0.866025I
0.55514 + 6.61623I 0
u = 1.54952 + 0.53390I
a = 0.149052 0.714642I
b = 0.500000 0.866025I
7.82170 3.78328I 0
u = 1.54952 0.53390I
a = 0.149052 + 0.714642I
b = 0.500000 + 0.866025I
7.82170 + 3.78328I 0
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.297617 + 0.055042I
a = 0.01076 + 3.33339I
b = 0.500000 + 0.866025I
2.22682 + 1.42904I 7.31849 0.06369I
u = 0.297617 0.055042I
a = 0.01076 3.33339I
b = 0.500000 0.866025I
2.22682 1.42904I 7.31849 + 0.06369I
u = 0.274042 + 0.083001I
a = 3.34695 1.10883I
b = 0.500000 + 0.866025I
0.55514 2.55647I 1.79322 + 3.96020I
u = 0.274042 0.083001I
a = 3.34695 + 1.10883I
b = 0.500000 0.866025I
0.55514 + 2.55647I 1.79322 3.96020I
u = 1.47649 + 1.04177I
a = 0.428484 + 0.117277I
b = 0.500000 + 0.866025I
2.22682 + 2.63073I 0
u = 1.47649 1.04177I
a = 0.428484 0.117277I
b = 0.500000 0.866025I
2.22682 2.63073I 0
u = 1.15150 + 1.51693I
a = 0.071364 + 0.228268I
b = 0.500000 0.866025I
7.82170 0.27648I 0
u = 1.15150 1.51693I
a = 0.071364 0.228268I
b = 0.500000 + 0.866025I
7.82170 + 0.27648I 0
u = 1.20361 + 1.58394I
a = 0.040685 0.253980I
b = 0.500000 + 0.866025I
7.22009 + 7.39385I 0
u = 1.20361 1.58394I
a = 0.040685 + 0.253980I
b = 0.500000 0.866025I
7.22009 7.39385I 0
19
IV. I
u
4
= h−u
3
2u
2
+ 2b 2u + 1, u
3
+ 2a 5, u
4
+ u
3
+ 2u
2
u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
12
=
1
2
u
3
+
5
2
1
2
u
3
+ u
2
+ u
1
2
a
1
=
u
2
+ u + 2
1
2
u
3
+ u
2
+ u
1
2
a
3
=
3
2
u
3
+ 3u
2
+ 5u +
3
2
1
2
u
3
+ u
3
2
a
2
=
3
2
u
3
+ 4u
2
+ 6u +
7
2
u
3
+ u
2
+ 2u 2
a
7
=
u
3
+ u
2
+ 2u 1
1
2
u
3
u
2
u
1
2
a
11
=
1
2
u
3
+
5
2
1
2
u
3
+ u
2
+ u
1
2
a
5
=
3
2
u
3
+ 3u
2
+ 5u +
3
2
1
2
u
3
+ u
3
2
a
6
=
u
2
u 2
1
2
u
3
u
2
u +
1
2
a
10
=
3
2
u
3
2u
2
3u +
5
2
1
2
u
3
+ u
2
+ u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
+ 4u
2
+ 4u 1
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
4
, c
8
c
9
u
4
+ u
3
+ 2u
2
u + 1
c
5
(u + 1)
4
c
6
, c
10
, c
12
(u
2
u + 1)
2
c
7
(u
2
+ u + 1)
2
c
11
u
4
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
8
c
9
y
4
+ 3y
3
+ 8y
2
+ 3y + 1
c
6
, c
7
, c
10
c
12
(y
2
+ y + 1)
2
c
11
y
4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.309017 + 0.535233I
a = 2.61803
b = 0.500000 + 0.866025I
1.64493 2.02988I 1.00000 + 3.46410I
u = 0.309017 0.535233I
a = 2.61803
b = 0.500000 0.866025I
1.64493 + 2.02988I 1.00000 3.46410I
u = 0.80902 + 1.40126I
a = 0.381966
b = 0.500000 0.866025I
1.64493 + 2.02988I 1.00000 3.46410I
u = 0.80902 1.40126I
a = 0.381966
b = 0.500000 + 0.866025I
1.64493 2.02988I 1.00000 + 3.46410I
23
V. I
u
5
= hb + u + 1, a 1, u
2
+ u + 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u 1
a
12
=
1
u 1
a
1
=
u
u 1
a
3
=
u
u + 1
a
2
=
u
u 1
a
7
=
0
u
a
11
=
1
u 1
a
5
=
u
u + 1
a
6
=
u
u + 1
a
10
=
u + 2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 2
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
11
u
2
c
3
, c
4
, c
6
c
8
, c
9
, c
10
u
2
+ u + 1
c
7
, c
12
u
2
u + 1
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
11
y
2
c
3
, c
4
, c
6
c
7
, c
8
, c
9
c
10
, c
12
y
2
+ y + 1
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 0.866025I
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
2.02988I 0. + 3.46410I
27
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
2
(u 1)
4
· (u
10
+ 2u
9
+ 9u
8
+ 15u
7
+ 28u
6
+ 36u
5
+ 35u
4
+ 22u
3
+ 15u
2
+ 6u + 1)
4
· (u
20
8u
19
+ ··· 10u + 1)(u
29
+ 9u
28
+ ··· 861u + 441)
c
2
u
2
(u 1)
4
· (u
10
2u
9
+ u
8
+ 3u
7
2u
6
2u
5
+ 3u
4
+ 2u
3
u
2
2u + 1)
4
· (u
20
+ 4u
19
+ ··· + 4u + 1)(u
29
+ 9u
28
+ ··· + 105u + 21)
c
3
, c
8
(u
2
+ u + 1)(u
4
+ u
3
+ 2u
2
u + 1)(u
20
+ u
19
+ ··· 2u + 1)
· (u
29
2u
28
+ ··· 3u + 1)(u
40
+ 2u
39
+ ··· 13u + 1)
c
4
, c
9
(u
2
+ u + 1)(u
4
+ u
3
+ 2u
2
u + 1)(u
20
3u
18
+ ··· 4u + 5)
· (u
29
u
28
+ ··· + 19u + 17)(u
40
+ 2u
39
+ ··· + 556819u + 78541)
c
5
u
2
(u + 1)
4
· (u
10
2u
9
+ u
8
+ 3u
7
2u
6
2u
5
+ 3u
4
+ 2u
3
u
2
2u + 1)
4
· (u
20
4u
19
+ ··· 4u + 1)(u
29
+ 9u
28
+ ··· + 105u + 21)
c
6
, c
10
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
20
2u
19
+ ··· + 2u + 1)
· (u
29
+ 3u
28
+ ··· + 29u + 1)(u
40
3u
39
+ ··· + 59250u + 16729)
c
7
(u
2
u + 1)(u
2
+ u + 1)
22
(u
20
6u
19
+ ··· 11u + 5)
· (u
29
18u
28
+ ··· 2560u + 512)
c
11
u
6
(u
10
+ 3u
9
+ 6u
8
+ 7u
7
+ 9u
6
+ 9u
5
+ 10u
4
+ 6u
3
+ 5u
2
+ 3u + 2)
4
· (u
20
+ 13u
19
+ ··· + 125u + 25)(u
29
18u
28
+ ··· + 294u 21)
c
12
((u
2
u + 1)
3
)(u
2
+ u + 1)
20
(u
20
+ 6u
19
+ ··· + 11u + 5)
· (u
29
18u
28
+ ··· 2560u + 512)
28
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
2
(y 1)
4
(y
10
+ 14y
9
+ ··· 6y + 1)
4
(y
20
+ 16y
19
+ ··· + 14y + 1)
· (y
29
+ 31y
28
+ ··· + 2190447y 194481)
c
2
, c
5
y
2
(y 1)
4
· (y
10
2y
9
+ 9y
8
15y
7
+ 28y
6
36y
5
+ 35y
4
22y
3
+ 15y
2
6y + 1)
4
· (y
20
8y
19
+ ··· 10y + 1)(y
29
9y
28
+ ··· 861y 441)
c
3
, c
8
(y
2
+ y + 1)(y
4
+ 3y
3
+ ··· + 3y + 1)(y
20
7y
19
+ ··· 16y + 1)
· (y
29
+ 28y
27
+ ··· 11y 1)(y
40
6y
39
+ ··· 41y + 1)
c
4
, c
9
(y
2
+ y + 1)(y
4
+ 3y
3
+ ··· + 3y + 1)(y
20
6y
19
+ ··· + 314y + 25)
· (y
29
15y
28
+ ··· + 3183y 289)
· (y
40
18y
39
+ ··· + 798086907y + 6168688681)
c
6
, c
10
((y
2
+ y + 1)
3
)(y
20
+ 6y
19
+ ··· 14y + 1)
· (y
29
+ 45y
28
+ ··· + 331y 1)
· (y
40
+ 41y
39
+ ··· + 1832579726y + 279859441)
c
7
, c
12
((y
2
+ y + 1)
23
)(y
20
+ 12y
19
+ ··· + 329y + 25)
· (y
29
+ 12y
28
+ ··· + 7864320y 262144)
c
11
y
6
(y
10
+ 3y
9
+ ··· + 11y + 4)
4
(y
20
+ y
19
+ ··· + 1525y + 625)
· (y
29
+ 4y
28
+ ··· + 1344y 441)
29