12n
0452
(K12n
0452
)
A knot diagram
1
Linearized knot diagam
3 6 8 10 2 10 12 3 1 8 3 7
Solving Sequence
8,12
7
1,3
11 10 6 2 5 4 9
c
7
c
12
c
11
c
10
c
6
c
2
c
5
c
4
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
19
+ 19u
18
+ ··· + 4b 12, 3u
19
20u
18
+ ··· + 32a 80, u
20
12u
19
+ ··· + 288u 32i
I
u
2
= h−145388409a
9
u 416262498a
8
u + ··· 5046614442a 113580331,
a
9
u + 4a
8
u + ··· + 2a + 1, u
2
+ u + 1i
I
u
3
= h2u
12
+ 2u
11
+ 8u
10
+ 5u
9
+ 15u
8
u
7
+ 13u
6
10u
5
+ 5u
4
11u
3
+ 2u
2
+ b 3u,
2u
11
+ 2u
10
+ 8u
9
+ 5u
8
+ 15u
7
u
6
+ 13u
5
10u
4
+ 5u
3
11u
2
+ a + 2u 3,
u
13
+ u
12
+ 5u
11
+ 4u
10
+ 12u
9
+ 4u
8
+ 15u
7
2u
6
+ 8u
5
8u
4
6u
2
2u 1i
* 3 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2u
19
+ 19u
18
+ · · · + 4b 12, 3u
19
20u
18
+ · · · + 32a 80, u
20
12u
19
+ · · · + 288u 32i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
3
32
u
19
+
5
8
u
18
+ ···
23
2
u +
5
2
1
2
u
19
19
4
u
18
+ ···
59
2
u + 3
a
11
=
19
32
u
19
+
105
16
u
18
+ ··· +
267
2
u 16
9
16
u
19
51
8
u
18
+ ··· 154u + 19
a
10
=
1
32
u
19
+
3
16
u
18
+ ···
41
2
u + 3
9
16
u
19
51
8
u
18
+ ··· 154u + 19
a
6
=
1
32
u
19
1
8
u
18
+ ··· 16u + 2
1
2
u
19
+
45
8
u
18
+ ··· + 218u 29
a
2
=
13
32
u
19
+
71
16
u
18
+ ··· +
241
2
u 15
7
16
u
19
37
8
u
18
+ ··· 101u + 13
a
5
=
1
16
u
19
27
16
u
18
+ ···
167
4
u +
7
2
3
16
u
19
+
19
8
u
18
+ ··· +
371
2
u 24
a
4
=
13
32
u
19
+
33
8
u
18
+ ··· + 41u
11
2
1
2
u
19
+
19
4
u
18
+ ··· +
59
2
u 3
a
9
=
19
32
u
19
105
16
u
18
+ ···
267
2
u + 17
9
16
u
19
+
51
8
u
18
+ ··· + 155u 19
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7
4
u
19
20u
18
+
491
4
u
17
517u
16
+
6595
4
u
15
8353
2
u
14
+
34489
4
u
13
58707
4
u
12
+
82427
4
u
11
47101
2
u
10
+
42177
2
u
9
13237u
8
+ 3090u
7
+
19739
4
u
6
32253
4
u
5
+
27135
4
u
4
7505
2
u
3
+ 1346u
2
268u + 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
+ 8u
19
+ ··· + 140u + 16
c
2
, c
5
u
20
+ 8u
19
+ ··· 14u 4
c
3
, c
4
, c
8
c
11
u
20
+ 13u
18
+ ··· 2u + 1
c
6
, c
9
u
20
u
19
+ ··· + 8u 1
c
7
, c
12
u
20
+ 12u
19
+ ··· 288u 32
c
10
u
20
14u
19
+ ··· + 92u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 12y
19
+ ··· + 144y + 256
c
2
, c
5
y
20
8y
19
+ ··· 140y + 16
c
3
, c
4
, c
8
c
11
y
20
+ 26y
19
+ ··· 6y + 1
c
6
, c
9
y
20
+ 15y
19
+ ··· 44y + 1
c
7
, c
12
y
20
+ 10y
19
+ ··· 2560y + 1024
c
10
y
20
2y
19
+ ··· + 1488y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.075750 + 0.527136I
a = 0.573996 1.042510I
b = 0.06793 + 1.42405I
0.652295 0.063400I 3.10398 + 0.28543I
u = 1.075750 0.527136I
a = 0.573996 + 1.042510I
b = 0.06793 1.42405I
0.652295 + 0.063400I 3.10398 0.28543I
u = 0.773680
a = 0.883116
b = 0.683249
2.79948 5.16970
u = 1.220080 + 0.372661I
a = 0.488481 + 1.192350I
b = 0.15165 1.63680I
2.48213 + 6.73732I 5.81800 4.44905I
u = 1.220080 0.372661I
a = 0.488481 1.192350I
b = 0.15165 + 1.63680I
2.48213 6.73732I 5.81800 + 4.44905I
u = 0.224454 + 1.268350I
a = 0.027225 0.309278I
b = 0.386163 + 0.103950I
2.15799 3.14030I 6.33386 + 3.02203I
u = 0.224454 1.268350I
a = 0.027225 + 0.309278I
b = 0.386163 0.103950I
2.15799 + 3.14030I 6.33386 3.02203I
u = 0.641665
a = 0.577618
b = 0.370637
1.75232 4.33040
u = 0.27440 + 1.41304I
a = 0.552394 0.086578I
b = 0.273914 0.756798I
5.72955 3.97634I 2.60990 + 3.53536I
u = 0.27440 1.41304I
a = 0.552394 + 0.086578I
b = 0.273914 + 0.756798I
5.72955 + 3.97634I 2.60990 3.53536I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.75896 + 1.24508I
a = 0.712912 0.941128I
b = 0.63071 + 1.60191I
1.64002 6.67897I 2.46195 + 3.53003I
u = 0.75896 1.24508I
a = 0.712912 + 0.941128I
b = 0.63071 1.60191I
1.64002 + 6.67897I 2.46195 3.53003I
u = 0.378434 + 0.367449I
a = 0.582962 0.854221I
b = 0.093271 + 0.537475I
0.254529 1.078120I 3.77931 + 6.22924I
u = 0.378434 0.367449I
a = 0.582962 + 0.854221I
b = 0.093271 0.537475I
0.254529 + 1.078120I 3.77931 6.22924I
u = 0.73237 + 1.30566I
a = 0.793219 + 0.921154I
b = 0.62179 1.71030I
0.48491 13.65130I 3.87240 + 7.23711I
u = 0.73237 1.30566I
a = 0.793219 0.921154I
b = 0.62179 + 1.71030I
0.48491 + 13.65130I 3.87240 7.23711I
u = 0.24241 + 1.52074I
a = 0.616057 0.104390I
b = 0.009409 + 0.962170I
4.41718 + 1.57291I 2.59421 1.48846I
u = 0.24241 1.52074I
a = 0.616057 + 0.104390I
b = 0.009409 0.962170I
4.41718 1.57291I 2.59421 + 1.48846I
u = 1.15915 + 1.09993I
a = 0.526308 + 0.853253I
b = 0.32845 1.56795I
7.94232 4.19743I 2.01377 + 4.62761I
u = 1.15915 1.09993I
a = 0.526308 0.853253I
b = 0.32845 + 1.56795I
7.94232 + 4.19743I 2.01377 4.62761I
6
II. I
u
2
= h−1.45 × 10
8
a
9
u 4.16 × 10
8
a
8
u + · · · 5.05 × 10
9
a 1.14 ×
10
8
, a
9
u + 4a
8
u + · · · + 2a + 1, u
2
+ u + 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
7
=
1
u + 1
a
1
=
u
u + 1
a
3
=
a
0.161928a
9
u + 0.463617a
8
u + ··· + 5.62073a + 0.126501
a
11
=
a
2
u
0.0874157a
9
u 0.164877a
8
u + ··· 1.57349a 2.70031
a
10
=
0.0874157a
9
u 0.164877a
8
u + ··· 1.57349a 2.70031
0.0874157a
9
u 0.164877a
8
u + ··· 1.57349a 2.70031
a
6
=
0.0351466a
9
u 0.131650a
8
u + ··· 2.53636a + 0.218613
0.00781644a
9
u + 0.156367a
8
u + ··· 0.328653a + 1.97905
a
2
=
0.0874157a
9
u 0.164877a
8
u + ··· 1.57349a 2.70031
0.275733a
9
u + 0.677652a
8
u + ··· + 2.30695a 1.97416
a
5
=
0.0777622a
9
u 0.0954980a
8
u + ··· 6.08282a 0.886513
0.0777622a
9
u 0.0954980a
8
u + ··· 5.08282a 0.886513
a
4
=
0.161928a
9
u 0.463617a
8
u + ··· 6.62073a 0.126501
0.161928a
9
u 0.463617a
8
u + ··· 5.62073a 0.126501
a
9
=
0.181574a
9
u 0.256387a
8
u + ··· 0.366731a + 2.33724
0.0806728a
9
u 0.751019a
8
u + ··· 5.08719a 5.76370
(ii) Obstruction class = 1
(iii) Cusp Shapes =
510421912
897858103
a
9
u +
905299596
897858103
a
8
u + ··· +
3135128908
897858103
a
6259589598
897858103
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
4
c
2
, c
5
(u
5
u
4
+ u
2
+ u 1)
4
c
3
, c
4
, c
8
c
11
u
20
+ u
19
+ ··· + 16u + 91
c
6
, c
9
u
20
+ 3u
19
+ ··· + 480u + 193
c
7
, c
12
(u
2
u + 1)
10
c
10
(u
5
+ 3u
4
5u
2
u + 3)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
4
c
2
, c
5
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
4
c
3
, c
4
, c
8
c
11
y
20
+ 15y
19
+ ··· + 124596y + 8281
c
6
, c
9
y
20
+ 11y
19
+ ··· 106108y + 37249
c
7
, c
12
(y
2
+ y + 1)
10
c
10
(y
5
9y
4
+ 28y
3
43y
2
+ 31y 9)
4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.667123 0.865495I
b = 0.23410 + 1.65564I
3.11500 0.18409I 5.11432 + 0.75879I
u = 0.500000 + 0.866025I
a = 0.487783 0.467051I
b = 1.65437 0.13929I
6.02349 + 5.36163I 4.08126 5.82638I
u = 0.500000 + 0.866025I
a = 1.26160 0.72565I
b = 0.88139 + 1.21499I
3.11500 + 4.24385I 5.11432 7.68699I
u = 0.500000 + 0.866025I
a = 1.20118 0.88684I
b = 0.37558 + 1.84419I
5.81699 + 2.02988I 13.60884 3.46410I
u = 0.500000 + 0.866025I
a = 0.61152 + 1.37080I
b = 0.00237 1.45540I
3.11500 + 4.24385I 5.11432 7.68699I
u = 0.500000 + 0.866025I
a = 0.350835 + 0.320152I
b = 1.53744 + 0.43212I
6.02349 1.30186I 4.08126 1.10182I
u = 0.500000 + 0.866025I
a = 1.14295 1.11541I
b = 0.101843 + 0.463908I
6.02349 1.30186I 4.08126 1.10182I
u = 0.500000 + 0.866025I
a = 0.94782 + 1.36308I
b = 0.160586 0.655958I
6.02349 + 5.36163I 4.08126 5.82638I
u = 0.500000 + 0.866025I
a = 1.55088 + 0.62509I
b = 0.415979 1.010490I
3.11500 0.18409I 5.11432 + 0.75879I
u = 0.500000 + 0.866025I
a = 1.40932 + 1.24736I
b = 0.16744 1.48368I
5.81699 + 2.02988I 13.60884 3.46410I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 0.866025I
a = 0.667123 + 0.865495I
b = 0.23410 1.65564I
3.11500 + 0.18409I 5.11432 0.75879I
u = 0.500000 0.866025I
a = 0.487783 + 0.467051I
b = 1.65437 + 0.13929I
6.02349 5.36163I 4.08126 + 5.82638I
u = 0.500000 0.866025I
a = 1.26160 + 0.72565I
b = 0.88139 1.21499I
3.11500 4.24385I 5.11432 + 7.68699I
u = 0.500000 0.866025I
a = 1.20118 + 0.88684I
b = 0.37558 1.84419I
5.81699 2.02988I 13.60884 + 3.46410I
u = 0.500000 0.866025I
a = 0.61152 1.37080I
b = 0.00237 + 1.45540I
3.11500 4.24385I 5.11432 + 7.68699I
u = 0.500000 0.866025I
a = 0.350835 0.320152I
b = 1.53744 0.43212I
6.02349 + 1.30186I 4.08126 + 1.10182I
u = 0.500000 0.866025I
a = 1.14295 + 1.11541I
b = 0.101843 0.463908I
6.02349 + 1.30186I 4.08126 + 1.10182I
u = 0.500000 0.866025I
a = 0.94782 1.36308I
b = 0.160586 + 0.655958I
6.02349 5.36163I 4.08126 + 5.82638I
u = 0.500000 0.866025I
a = 1.55088 0.62509I
b = 0.415979 + 1.010490I
3.11500 + 0.18409I 5.11432 0.75879I
u = 0.500000 0.866025I
a = 1.40932 1.24736I
b = 0.16744 + 1.48368I
5.81699 2.02988I 13.60884 + 3.46410I
11
III.
I
u
3
= h2u
12
+2u
11
+· · ·+b3u, 2u
11
+2u
10
+· · ·+a3, u
13
+u
12
+· · ·2u1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
2u
11
2u
10
+ ··· 2u + 3
2u
12
2u
11
+ ··· 2u
2
+ 3u
a
11
=
2u
12
+ 2u
11
+ ··· 7u 4
u
11
u
10
4u
9
3u
8
8u
7
u
6
7u
5
+ 3u
4
u
3
+ 5u
2
+ u + 2
a
10
=
2u
12
+ u
11
+ ··· 6u 2
u
11
u
10
4u
9
3u
8
8u
7
u
6
7u
5
+ 3u
4
u
3
+ 5u
2
+ u + 2
a
6
=
4u
12
5u
11
+ ··· + 12u + 4
u
12
u
11
4u
10
2u
9
7u
8
+ 2u
7
5u
6
+ 8u
5
2u
4
+ 7u
3
2u
2
2
a
2
=
u
12
+ 4u
10
+ 9u
8
4u
7
+ 14u
6
9u
5
+ 11u
4
9u
3
+ 4u
2
6u 2
u
12
u
11
4u
10
3u
9
8u
8
u
7
7u
6
+ 3u
5
u
4
+ 5u
3
+ u
2
+ u + 1
a
5
=
5u
12
8u
11
+ ··· + 11u + 1
2u
12
3u
11
+ ··· + 2u
2
1
a
4
=
2u
12
4u
11
+ ··· + u + 3
2u
12
2u
11
+ ··· 2u
2
+ 3u
a
9
=
2u
12
+ 2u
11
+ ··· 7u 3
u
11
u
10
4u
9
3u
8
8u
7
u
6
7u
5
+ 3u
4
u
3
+ 5u
2
+ 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
12
+ 8u
10
6u
9
+ 11u
8
25u
7
+ 16u
6
32u
5
+ 17u
4
21u
3
+ 10u
2
6u 3
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
7u
12
+ ··· + 11u 1
c
2
u
13
+ 3u
12
+ ··· 3u 1
c
3
, c
11
u
13
+ 5u
11
+ ··· + 2u 1
c
4
, c
8
u
13
+ 5u
11
+ ··· + 2u + 1
c
5
u
13
3u
12
+ ··· 3u + 1
c
6
, c
9
u
13
u
12
+ ··· + 4u 1
c
7
u
13
+ u
12
+ ··· 2u 1
c
10
u
13
+ 9u
12
+ ··· + 37u + 13
c
12
u
13
u
12
+ ··· 2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
13
+ 5y
12
+ ··· + 3y 1
c
2
, c
5
y
13
7y
12
+ ··· + 11y 1
c
3
, c
4
, c
8
c
11
y
13
+ 10y
12
+ ··· 8y 1
c
6
, c
9
y
13
+ 7y
12
+ ··· 6y 1
c
7
, c
12
y
13
+ 9y
12
+ ··· 8y 1
c
10
y
13
13y
12
+ ··· + 823y 169
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.455315 + 0.926259I
a = 1.30401 0.92398I
b = 0.26211 + 1.62856I
5.10038 + 1.80525I 0.685652 + 0.373124I
u = 0.455315 0.926259I
a = 1.30401 + 0.92398I
b = 0.26211 1.62856I
5.10038 1.80525I 0.685652 0.373124I
u = 0.330629 + 1.050710I
a = 0.526104 0.756260I
b = 0.968558 + 0.302743I
7.37935 + 2.09783I 1.85932 2.29421I
u = 0.330629 1.050710I
a = 0.526104 + 0.756260I
b = 0.968558 0.302743I
7.37935 2.09783I 1.85932 + 2.29421I
u = 0.261606 + 1.120690I
a = 0.257704 + 0.773845I
b = 0.934657 0.086363I
7.75893 4.58141I 1.77723 + 3.45534I
u = 0.261606 1.120690I
a = 0.257704 0.773845I
b = 0.934657 + 0.086363I
7.75893 + 4.58141I 1.77723 3.45534I
u = 0.821318
a = 0.679855
b = 0.558377
3.20028 15.7750
u = 0.187185 + 1.333980I
a = 0.289656 + 0.057723I
b = 0.022783 + 0.397202I
1.68403 3.14745I 11.16043 + 3.23588I
u = 0.187185 1.333980I
a = 0.289656 0.057723I
b = 0.022783 0.397202I
1.68403 + 3.14745I 11.16043 3.23588I
u = 1.00368 + 1.09374I
a = 0.690172 + 0.872596I
b = 0.26168 1.63068I
8.74104 + 3.76955I 10.38992 1.19515I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00368 1.09374I
a = 0.690172 0.872596I
b = 0.26168 + 1.63068I
8.74104 3.76955I 10.38992 + 1.19515I
u = 0.231085 + 0.352821I
a = 2.16803 2.17855I
b = 0.267639 + 1.268360I
3.02569 + 2.39354I 4.01321 3.22127I
u = 0.231085 0.352821I
a = 2.16803 + 2.17855I
b = 0.267639 1.268360I
3.02569 2.39354I 4.01321 + 3.22127I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
4
)(u
13
7u
12
+ ··· + 11u 1)
· (u
20
+ 8u
19
+ ··· + 140u + 16)
c
2
((u
5
u
4
+ u
2
+ u 1)
4
)(u
13
+ 3u
12
+ ··· 3u 1)
· (u
20
+ 8u
19
+ ··· 14u 4)
c
3
, c
11
(u
13
+ 5u
11
+ ··· + 2u 1)(u
20
+ 13u
18
+ ··· 2u + 1)
· (u
20
+ u
19
+ ··· + 16u + 91)
c
4
, c
8
(u
13
+ 5u
11
+ ··· + 2u + 1)(u
20
+ 13u
18
+ ··· 2u + 1)
· (u
20
+ u
19
+ ··· + 16u + 91)
c
5
((u
5
u
4
+ u
2
+ u 1)
4
)(u
13
3u
12
+ ··· 3u + 1)
· (u
20
+ 8u
19
+ ··· 14u 4)
c
6
, c
9
(u
13
u
12
+ ··· + 4u 1)(u
20
u
19
+ ··· + 8u 1)
· (u
20
+ 3u
19
+ ··· + 480u + 193)
c
7
((u
2
u + 1)
10
)(u
13
+ u
12
+ ··· 2u 1)(u
20
+ 12u
19
+ ··· 288u 32)
c
10
((u
5
+ 3u
4
5u
2
u + 3)
4
)(u
13
+ 9u
12
+ ··· + 37u + 13)
· (u
20
14u
19
+ ··· + 92u 16)
c
12
((u
2
u + 1)
10
)(u
13
u
12
+ ··· 2u + 1)(u
20
+ 12u
19
+ ··· 288u 32)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
4
)(y
13
+ 5y
12
+ ··· + 3y 1)
· (y
20
+ 12y
19
+ ··· + 144y + 256)
c
2
, c
5
((y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
4
)(y
13
7y
12
+ ··· + 11y 1)
· (y
20
8y
19
+ ··· 140y + 16)
c
3
, c
4
, c
8
c
11
(y
13
+ 10y
12
+ ··· 8y 1)(y
20
+ 15y
19
+ ··· + 124596y + 8281)
· (y
20
+ 26y
19
+ ··· 6y + 1)
c
6
, c
9
(y
13
+ 7y
12
+ ··· 6y 1)(y
20
+ 11y
19
+ ··· 106108y + 37249)
· (y
20
+ 15y
19
+ ··· 44y + 1)
c
7
, c
12
((y
2
+ y + 1)
10
)(y
13
+ 9y
12
+ ··· 8y 1)
· (y
20
+ 10y
19
+ ··· 2560y + 1024)
c
10
((y
5
9y
4
+ 28y
3
43y
2
+ 31y 9)
4
)(y
13
13y
12
+ ··· + 823y 169)
· (y
20
2y
19
+ ··· + 1488y + 256)
18