12n
0455
(K12n
0455
)
A knot diagram
1
Linearized knot diagam
3 6 8 7 2 11 4 3 12 1 7 10
Solving Sequence
4,7 8,11
12 3 9 10 6 2 1 5
c
7
c
11
c
3
c
8
c
9
c
6
c
2
c
1
c
5
c
4
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h3.50811 × 10
48
u
55
+ 5.98520 × 10
48
u
54
+ ··· + 2.69358 × 10
47
b + 4.89292 × 10
49
,
2.55712 × 10
50
u
55
+ 4.32535 × 10
50
u
54
+ ··· + 5.65653 × 10
48
a + 3.41422 × 10
51
, u
56
+ 2u
55
+ ··· + 44u + 4i
I
u
2
= hb, 3a + u + 1, u
2
u + 1i
I
u
3
= h−au + 9b 4a + u 5, 2a
2
au + 5u 9, u
2
+ 2i
I
v
1
= ha, b + v + 2, v
2
+ 3v + 1i
* 4 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3.51×10
48
u
55
+5.99×10
48
u
54
+· · ·+2.69×10
47
b+4.89×10
49
, 2.56×10
50
u
55
+
4.33 × 10
50
u
54
+ · · · + 5.66 × 10
48
a + 3.41 × 10
51
, u
56
+ 2u
55
+ · · · + 44u + 4i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
11
=
45.2065u
55
76.4665u
54
+ ··· 4615.91u 603.589
13.0239u
55
22.2202u
54
+ ··· 1365.32u 181.651
a
12
=
32.1825u
55
54.2463u
54
+ ··· 3250.59u 421.938
13.0239u
55
22.2202u
54
+ ··· 1365.32u 181.651
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
10
=
33.0942u
55
+ 56.4532u
54
+ ··· + 3417.51u + 449.013
28.0321u
55
47.5425u
54
+ ··· 2839.05u 370.800
a
6
=
27.7411u
55
+ 46.8651u
54
+ ··· + 2813.09u + 362.109
24.2434u
55
+ 41.0750u
54
+ ··· + 2515.79u + 329.906
a
2
=
27.7411u
55
46.8651u
54
+ ··· 2813.09u 362.109
27.3678u
55
+ 46.3317u
54
+ ··· + 2783.98u + 364.375
a
1
=
28.1461u
55
47.2742u
54
+ ··· 2852.14u 366.930
28.0321u
55
+ 47.5425u
54
+ ··· + 2839.05u + 370.800
a
5
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 46.3572u
55
80.1696u
54
+ ··· 5049.53u 698.513
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
56
+ 24u
55
+ ··· + 25165u + 361
c
2
, c
5
u
56
+ 4u
55
+ ··· 41u + 19
c
3
, c
4
, c
7
c
8
u
56
+ 2u
55
+ ··· + 44u + 4
c
6
, c
11
u
56
2u
55
+ ··· 108u + 36
c
9
, c
10
, c
12
u
56
6u
55
+ ··· + 31u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
56
+ 16y
55
+ ··· 427912989y + 130321
c
2
, c
5
y
56
24y
55
+ ··· 25165y + 361
c
3
, c
4
, c
7
c
8
y
56
+ 50y
55
+ ··· 464y + 16
c
6
, c
11
y
56
24y
55
+ ··· 17784y + 1296
c
9
, c
10
, c
12
y
56
50y
55
+ ··· + 605y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.357425 + 0.939932I
a = 0.508559 + 0.668079I
b = 0.709734 + 0.751032I
0.10978 + 1.51144I 0
u = 0.357425 0.939932I
a = 0.508559 0.668079I
b = 0.709734 0.751032I
0.10978 1.51144I 0
u = 0.916252 + 0.279624I
a = 0.263707 0.445797I
b = 0.801946 + 0.644092I
0.01268 + 4.06286I 6.20066 5.47620I
u = 0.916252 0.279624I
a = 0.263707 + 0.445797I
b = 0.801946 0.644092I
0.01268 4.06286I 6.20066 + 5.47620I
u = 0.870458 + 0.356425I
a = 0.654647 + 0.719979I
b = 1.104950 0.815677I
2.43509 10.45620I 7.88871 + 7.69025I
u = 0.870458 0.356425I
a = 0.654647 0.719979I
b = 1.104950 + 0.815677I
2.43509 + 10.45620I 7.88871 7.69025I
u = 0.672518 + 0.823461I
a = 0.189263 0.600931I
b = 0.930657 0.635738I
3.85927 + 5.20665I 0
u = 0.672518 0.823461I
a = 0.189263 + 0.600931I
b = 0.930657 + 0.635738I
3.85927 5.20665I 0
u = 0.138429 + 1.163150I
a = 2.11508 + 0.18189I
b = 0.981368 0.595861I
3.70144 0.59074I 0
u = 0.138429 1.163150I
a = 2.11508 0.18189I
b = 0.981368 + 0.595861I
3.70144 + 0.59074I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.796673 + 0.217361I
a = 0.732692 0.735103I
b = 1.047550 + 0.754047I
2.36888 5.77663I 3.49704 + 6.12922I
u = 0.796673 0.217361I
a = 0.732692 + 0.735103I
b = 1.047550 0.754047I
2.36888 + 5.77663I 3.49704 6.12922I
u = 0.813175
a = 0.696477
b = 0.998455
7.46368 11.8850
u = 0.786622 + 0.053183I
a = 0.235360 + 0.517834I
b = 0.691285 0.845614I
3.46294 + 0.21119I 6 0.626193 + 0.10I
u = 0.786622 0.053183I
a = 0.235360 0.517834I
b = 0.691285 + 0.845614I
3.46294 0.21119I 6 0.626193 + 0.10I
u = 0.686659 + 1.019540I
a = 0.152248 + 0.372794I
b = 0.649441 + 0.261695I
2.10341 + 1.46035I 0
u = 0.686659 1.019540I
a = 0.152248 0.372794I
b = 0.649441 0.261695I
2.10341 1.46035I 0
u = 0.363201 + 1.199600I
a = 0.050246 0.686716I
b = 0.360705 0.909449I
0.05819 + 3.93594I 0
u = 0.363201 1.199600I
a = 0.050246 + 0.686716I
b = 0.360705 + 0.909449I
0.05819 3.93594I 0
u = 0.694825 + 0.177977I
a = 0.175933 + 0.543419I
b = 0.679667 1.057170I
1.07651 + 3.71517I 5.64023 4.49934I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.694825 0.177977I
a = 0.175933 0.543419I
b = 0.679667 + 1.057170I
1.07651 3.71517I 5.64023 + 4.49934I
u = 0.222724 + 1.263850I
a = 0.746580 0.478205I
b = 0.691653 0.998010I
4.19144 2.28903I 0
u = 0.222724 1.263850I
a = 0.746580 + 0.478205I
b = 0.691653 + 0.998010I
4.19144 + 2.28903I 0
u = 0.212493 + 0.663538I
a = 0.798139 + 0.138816I
b = 0.332186 + 0.507658I
0.238433 + 1.252040I 2.82125 5.02862I
u = 0.212493 0.663538I
a = 0.798139 0.138816I
b = 0.332186 0.507658I
0.238433 1.252040I 2.82125 + 5.02862I
u = 0.125478 + 1.304740I
a = 0.84758 + 1.18038I
b = 0.758335 0.376703I
6.56363 1.59389I 0
u = 0.125478 1.304740I
a = 0.84758 1.18038I
b = 0.758335 + 0.376703I
6.56363 + 1.59389I 0
u = 0.098940 + 1.329620I
a = 2.59434 + 0.37087I
b = 1.79675 + 0.14155I
14.6366 1.4158I 0
u = 0.098940 1.329620I
a = 2.59434 0.37087I
b = 1.79675 0.14155I
14.6366 + 1.4158I 0
u = 0.326495 + 1.296350I
a = 1.68324 0.31227I
b = 0.993147 + 0.745876I
0.74471 + 4.21273I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.326495 1.296350I
a = 1.68324 + 0.31227I
b = 0.993147 0.745876I
0.74471 4.21273I 0
u = 0.261932 + 1.315040I
a = 2.39778 0.42809I
b = 1.291360 + 0.390540I
4.85102 4.10127I 0
u = 0.261932 1.315040I
a = 2.39778 + 0.42809I
b = 1.291360 0.390540I
4.85102 + 4.10127I 0
u = 0.646445 + 0.063362I
a = 0.928542 + 0.691777I
b = 0.988563 0.589361I
0.514192 0.792549I 4.90653 + 2.84844I
u = 0.646445 0.063362I
a = 0.928542 0.691777I
b = 0.988563 + 0.589361I
0.514192 + 0.792549I 4.90653 2.84844I
u = 0.341280 + 1.316540I
a = 0.817304 0.783388I
b = 1.073100 + 0.391226I
11.62750 4.16517I 0
u = 0.341280 1.316540I
a = 0.817304 + 0.783388I
b = 1.073100 0.391226I
11.62750 + 4.16517I 0
u = 0.288431 + 1.366350I
a = 0.141585 + 0.969892I
b = 0.55694 + 1.31146I
5.96654 + 7.30226I 0
u = 0.288431 1.366350I
a = 0.141585 0.969892I
b = 0.55694 1.31146I
5.96654 7.30226I 0
u = 0.085846 + 1.404690I
a = 0.72751 1.48763I
b = 0.118836 + 0.664953I
8.80079 + 0.29511I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.085846 1.404690I
a = 0.72751 + 1.48763I
b = 0.118836 0.664953I
8.80079 0.29511I 0
u = 0.33202 + 1.39409I
a = 2.13548 + 0.45520I
b = 1.242450 0.672303I
2.74251 9.86043I 0
u = 0.33202 1.39409I
a = 2.13548 0.45520I
b = 1.242450 + 0.672303I
2.74251 + 9.86043I 0
u = 0.04599 + 1.47574I
a = 1.78492 0.56193I
b = 0.697621 0.210255I
7.13747 + 0.98410I 0
u = 0.04599 1.47574I
a = 1.78492 + 0.56193I
b = 0.697621 + 0.210255I
7.13747 0.98410I 0
u = 0.37725 + 1.42997I
a = 1.48324 + 0.27092I
b = 1.064050 0.776573I
5.40146 + 8.69654I 0
u = 0.37725 1.42997I
a = 1.48324 0.27092I
b = 1.064050 + 0.776573I
5.40146 8.69654I 0
u = 0.34531 + 1.47025I
a = 1.95103 0.36645I
b = 1.27086 + 0.84602I
8.2789 14.8605I 0
u = 0.34531 1.47025I
a = 1.95103 + 0.36645I
b = 1.27086 0.84602I
8.2789 + 14.8605I 0
u = 0.146752 + 0.464276I
a = 3.63219 + 0.90440I
b = 0.425085 0.514946I
3.04021 0.77078I 13.4195 5.3259I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.146752 0.464276I
a = 3.63219 0.90440I
b = 0.425085 + 0.514946I
3.04021 + 0.77078I 13.4195 + 5.3259I
u = 0.07154 + 1.61009I
a = 1.293690 + 0.377349I
b = 1.078470 + 0.249906I
12.46720 + 2.72041I 0
u = 0.07154 1.61009I
a = 1.293690 0.377349I
b = 1.078470 0.249906I
12.46720 2.72041I 0
u = 0.308833
a = 4.42147
b = 0.567778
2.38389 8.02900
u = 0.296374
a = 0.686807
b = 1.68419
10.2992 9.48110
u = 0.250665
a = 2.26479
b = 0.539323
1.17956 7.76820
10
II. I
u
2
= hb, 3a + u + 1, u
2
u + 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u + 1
a
11
=
1
3
u
1
3
0
a
12
=
1
3
u
1
3
0
a
3
=
u
u 1
a
9
=
u
u + 2
a
10
=
2
3
u
1
3
u + 2
a
6
=
1
0
a
2
=
1
u 1
a
1
=
u
u 2
a
5
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
20
3
u 3
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
u
2
+ u + 1
c
2
, c
7
, c
8
u
2
u + 1
c
6
, c
11
u
2
c
9
, c
10
(u 1)
2
c
12
(u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
7
c
8
y
2
+ y + 1
c
6
, c
11
y
2
c
9
, c
10
, c
12
(y 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.288675I
b = 0
1.64493 + 2.02988I 6.33333 5.77350I
u = 0.500000 0.866025I
a = 0.500000 + 0.288675I
b = 0
1.64493 2.02988I 6.33333 + 5.77350I
14
III. I
u
3
= h−au + 9b 4a + u 5, 2a
2
au + 5u 9, u
2
+ 2i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
2
a
11
=
a
1
9
au +
4
9
a
1
9
u +
5
9
a
12
=
1
9
au +
5
9
a +
1
9
u
5
9
1
9
au +
4
9
a
1
9
u +
5
9
a
3
=
u
u
a
9
=
1
0
a
10
=
1
2
u 2
1
9
au
4
9
a +
1
9
u
14
9
a
6
=
1
9
au
4
9
a +
11
18
u
14
9
1
9
au
4
9
a +
1
9
u
14
9
a
2
=
1
9
au
4
9
a
7
18
u
14
9
1
9
au
4
9
a
8
9
u
14
9
a
1
=
1
9
au
4
9
a +
11
18
u
14
9
1
9
au
4
9
a +
1
9
u
14
9
a
5
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
7
c
8
(u
2
+ 2)
2
c
6
, c
12
(u
2
u 1)
2
c
9
, c
10
, c
11
(u
2
+ u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
7
c
8
(y + 2)
4
c
6
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 2.23607 0.43702I
b = 1.61803
15.4624 16.0000
u = 1.414210I
a = 2.23607 + 1.14412I
b = 0.618034
7.56670 16.0000
u = 1.414210I
a = 2.23607 + 0.43702I
b = 1.61803
15.4624 16.0000
u = 1.414210I
a = 2.23607 1.14412I
b = 0.618034
7.56670 16.0000
18
IV. I
v
1
= ha, b + v + 2, v
2
+ 3v + 1i
(i) Arc colorings
a
4
=
v
0
a
7
=
1
0
a
8
=
1
0
a
11
=
0
v 2
a
12
=
v + 2
v 2
a
3
=
v
0
a
9
=
1
0
a
10
=
v 2
v + 3
a
6
=
1
v 3
a
2
=
v 1
v + 3
a
1
=
1
v + 3
a
5
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 26
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
7
c
8
u
2
c
5
(u + 1)
2
c
6
, c
9
, c
10
u
2
+ u 1
c
11
, c
12
u
2
u 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
c
6
, c
9
, c
10
c
11
, c
12
y
2
3y + 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
10.5276 26.0000
v = 2.61803
a = 0
b = 0.618034
2.63189 26.0000
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
2
+ u + 1)(u
56
+ 24u
55
+ ··· + 25165u + 361)
c
2
((u 1)
2
)(u + 1)
4
(u
2
u + 1)(u
56
+ 4u
55
+ ··· 41u + 19)
c
3
, c
4
u
2
(u
2
+ 2)
2
(u
2
+ u + 1)(u
56
+ 2u
55
+ ··· + 44u + 4)
c
5
((u 1)
4
)(u + 1)
2
(u
2
+ u + 1)(u
56
+ 4u
55
+ ··· 41u + 19)
c
6
u
2
(u
2
u 1)
2
(u
2
+ u 1)(u
56
2u
55
+ ··· 108u + 36)
c
7
, c
8
u
2
(u
2
+ 2)
2
(u
2
u + 1)(u
56
+ 2u
55
+ ··· + 44u + 4)
c
9
, c
10
((u 1)
2
)(u
2
+ u 1)
3
(u
56
6u
55
+ ··· + 31u + 9)
c
11
u
2
(u
2
u 1)(u
2
+ u 1)
2
(u
56
2u
55
+ ··· 108u + 36)
c
12
((u + 1)
2
)(u
2
u 1)
3
(u
56
6u
55
+ ··· + 31u + 9)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
2
+ y + 1)(y
56
+ 16y
55
+ ··· 4.27913 × 10
8
y + 130321)
c
2
, c
5
((y 1)
6
)(y
2
+ y + 1)(y
56
24y
55
+ ··· 25165y + 361)
c
3
, c
4
, c
7
c
8
y
2
(y + 2)
4
(y
2
+ y + 1)(y
56
+ 50y
55
+ ··· 464y + 16)
c
6
, c
11
y
2
(y
2
3y + 1)
3
(y
56
24y
55
+ ··· 17784y + 1296)
c
9
, c
10
, c
12
((y 1)
2
)(y
2
3y + 1)
3
(y
56
50y
55
+ ··· + 605y + 81)
24