12n
0456
(K12n
0456
)
A knot diagram
1
Linearized knot diagam
3 6 9 8 2 11 5 4 12 6 9 10
Solving Sequence
5,8
4
9,11
12 3 7 6 2 1 10
c
4
c
8
c
11
c
3
c
7
c
6
c
2
c
1
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h6263646729160u
18
+ 14140809413971u
17
+ ··· + 89100980340036b 30737815843748,
18590835030469u
18
+ 42781634933956u
17
+ ··· + 89100980340036a + 3563580716326,
u
19
+ 2u
18
+ ··· 4u + 4i
I
u
2
= h−2u
4
+ 3u
3
8u
2
+ 3b + 7u 5, 2u
4
+ 3u
3
8u
2
+ 3a + 7u 5, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
I
u
3
= hau + 3b 4a 2u 1, 2a
2
+ 3au 2a + u 3, u
2
+ 2i
I
v
1
= ha, b v + 2, v
2
3v + 1i
* 4 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h6.26 × 10
12
u
18
+ 1.41 × 10
13
u
17
+ · · · + 8.91 × 10
13
b 3.07 × 10
13
, 1.86 ×
10
13
u
18
+4.28×10
13
u
17
+· · ·+8.91×10
13
a+3.56×10
12
, u
19
+2u
18
+· · ·4u+4i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
0.208649u
18
0.480148u
17
+ ··· + 3.87234u 0.0399949
0.0702983u
18
0.158705u
17
+ ··· + 2.22000u + 0.344977
a
12
=
0.244992u
18
0.555084u
17
+ ··· + 4.64401u + 0.313303
0.0108279u
18
0.00284769u
17
+ ··· + 1.31196u 0.0173194
a
3
=
u
2
+ 1
u
4
2u
2
a
7
=
u
u
a
6
=
0.224318u
18
0.601824u
17
+ ··· + 0.750211u + 2.25690
0.0287859u
18
+ 0.0720971u
17
+ ··· + 0.834764u + 0.0468869
a
2
=
0.274839u
18
0.716004u
17
+ ··· + 1.86949u + 2.91655
0.135398u
18
+ 0.314325u
17
+ ··· 1.55333u 1.32495
a
1
=
0.328521u
18
0.867710u
17
+ ··· + 1.09177u + 2.92776
0.181013u
18
+ 0.450207u
17
+ ··· 1.64773u 1.56042
a
10
=
0.265765u
18
+ 0.718930u
17
+ ··· + 0.293501u 3.20338
0.180775u
18
0.461139u
17
+ ··· + 2.62586u + 1.11854
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
71570433112501
66825735255027
u
18
+
150381276390913
66825735255027
u
17
+ ···
2412887014500530
66825735255027
u
508458695878388
66825735255027
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
+ 26u
18
+ ··· + 17485u + 361
c
2
, c
5
u
19
+ 4u
18
+ ··· 105u 19
c
3
, c
4
, c
7
c
8
u
19
2u
18
+ ··· 4u 4
c
6
, c
10
u
19
+ 2u
18
+ ··· 384u 288
c
9
, c
11
, c
12
u
19
+ 9u
18
+ ··· 48u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
58y
18
+ ··· + 218537949y 130321
c
2
, c
5
y
19
26y
18
+ ··· + 17485y 361
c
3
, c
4
, c
7
c
8
y
19
+ 16y
18
+ ··· + 336y 16
c
6
, c
10
y
19
+ 24y
18
+ ··· + 1101312y 82944
c
9
, c
11
, c
12
y
19
5y
18
+ ··· + 3042y 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.074260 + 0.917453I
a = 0.994466 0.538689I
b = 0.317235 + 0.013665I
1.53865 1.34534I 0.43995 + 3.44940I
u = 0.074260 0.917453I
a = 0.994466 + 0.538689I
b = 0.317235 0.013665I
1.53865 + 1.34534I 0.43995 3.44940I
u = 0.682490 + 0.464817I
a = 0.506827 + 0.094261I
b = 0.670269 1.079920I
1.35153 0.43293I 1.33817 + 2.53322I
u = 0.682490 0.464817I
a = 0.506827 0.094261I
b = 0.670269 + 1.079920I
1.35153 + 0.43293I 1.33817 2.53322I
u = 0.017361 + 1.304010I
a = 1.72921 0.99084I
b = 1.41667 1.52874I
4.96292 + 0.91602I 7.77670 1.28958I
u = 0.017361 1.304010I
a = 1.72921 + 0.99084I
b = 1.41667 + 1.52874I
4.96292 0.91602I 7.77670 + 1.28958I
u = 1.302620 + 0.369270I
a = 0.245431 0.163795I
b = 0.25437 + 1.92922I
11.99340 + 5.23790I 1.08128 2.47083I
u = 1.302620 0.369270I
a = 0.245431 + 0.163795I
b = 0.25437 1.92922I
11.99340 5.23790I 1.08128 + 2.47083I
u = 0.537549
a = 2.91204
b = 0.537401
6.81454 5.63570
u = 0.58466 + 1.34467I
a = 0.940809 0.609725I
b = 0.099480 1.008040I
1.61779 4.70658I 1.34919 + 3.92901I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.58466 1.34467I
a = 0.940809 + 0.609725I
b = 0.099480 + 1.008040I
1.61779 + 4.70658I 1.34919 3.92901I
u = 0.88316 + 1.34583I
a = 0.905620 + 0.537079I
b = 0.13821 + 1.90748I
9.13960 + 2.40553I 0.343243 1.215158I
u = 0.88316 1.34583I
a = 0.905620 0.537079I
b = 0.13821 1.90748I
9.13960 2.40553I 0.343243 + 1.215158I
u = 0.360199
a = 0.304748
b = 0.772322
1.03641 12.4460
u = 0.13765 + 1.63790I
a = 0.009641 0.326348I
b = 0.387996 + 0.243197I
13.18610 2.66860I 6.26035 0.13482I
u = 0.13765 1.63790I
a = 0.009641 + 0.326348I
b = 0.387996 0.243197I
13.18610 + 2.66860I 6.26035 + 0.13482I
u = 0.47543 + 1.60768I
a = 1.18254 0.93225I
b = 0.40816 2.02733I
5.61029 + 11.60150I 1.76287 4.79752I
u = 0.47543 1.60768I
a = 1.18254 + 0.93225I
b = 0.40816 + 2.02733I
5.61029 11.60150I 1.76287 + 4.79752I
u = 0.271135
a = 2.37175
b = 0.623508
1.22081 10.2060
6
II. I
u
2
= h−2u
4
+ 3u
3
8u
2
+ 3b + 7u 5, 2u
4
+ 3u
3
8u
2
+ 3a + 7u
5, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
2
3
u
4
u
3
+
8
3
u
2
7
3
u +
5
3
2
3
u
4
u
3
+
8
3
u
2
7
3
u +
5
3
a
12
=
2
3
u
4
u
3
+
8
3
u
2
4
3
u +
5
3
2
3
u
4
2u
3
+
8
3
u
2
10
3
u +
5
3
a
3
=
u
2
+ 1
u
4
2u
2
a
7
=
u
u
a
6
=
u
u
a
2
=
u
3
+ 2u
u
4
+ u
3
3u
2
+ 2u 1
a
1
=
u
u
3
u
a
10
=
2
3
u
4
u
3
+
8
3
u
2
7
3
u +
5
3
2
3
u
4
u
3
+
8
3
u
2
7
3
u +
5
3
(ii) Obstruction class = 1
(iii) Cusp Shapes =
58
9
u
4
+
13
3
u
3
211
9
u
2
+
128
9
u
115
9
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
2
u
5
u
4
+ u
2
+ u 1
c
5
u
5
+ u
4
u
2
+ u + 1
c
6
, c
10
u
5
c
7
, c
8
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
9
(u + 1)
5
c
11
, c
12
(u 1)
5
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
c
2
, c
5
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
c
6
, c
10
y
5
c
9
, c
11
, c
12
(y 1)
5
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 0.046507 0.815869I
b = 0.046507 0.815869I
3.46474 2.21397I 2.99716 + 4.40290I
u = 0.233677 0.885557I
a = 0.046507 + 0.815869I
b = 0.046507 + 0.815869I
3.46474 + 2.21397I 2.99716 4.40290I
u = 0.416284
a = 1.10533
b = 1.10533
0.762751 10.8010
u = 0.05818 + 1.69128I
a = 0.172825 + 0.649395I
b = 0.172825 + 0.649395I
12.60320 3.33174I 0.51443 + 5.79761I
u = 0.05818 1.69128I
a = 0.172825 0.649395I
b = 0.172825 0.649395I
12.60320 + 3.33174I 0.51443 5.79761I
10
III. I
u
3
= hau + 3b 4a 2u 1, 2a
2
+ 3au 2a + u 3, u
2
+ 2i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
4
=
1
2
a
9
=
u
u
a
11
=
a
1
3
au +
4
3
a +
2
3
u +
1
3
a
12
=
2
3
au +
1
3
a
4
3
u
2
3
1
3
au +
2
3
a
2
3
u
1
3
a
3
=
1
0
a
7
=
u
u
a
6
=
1
3
au +
1
3
a +
7
6
u +
4
3
1
a
2
=
1
3
au +
1
3
a +
7
6
u +
1
3
1
a
1
=
1
3
au +
1
3
a +
7
6
u +
4
3
1
a
10
=
au + a +
3
2
u + 2
2
3
au +
2
3
a +
1
3
u +
5
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
7
c
8
(u
2
+ 2)
2
c
6
, c
11
, c
12
(u
2
+ u 1)
2
c
9
, c
10
(u
2
u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
7
c
8
(y + 2)
4
c
6
, c
9
, c
10
c
11
, c
12
(y
2
3y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.618034 0.270091I
b = 0.618034 + 0.874032I
12.1725 4.00000
u = 1.414210I
a = 1.61803 1.85123I
b = 1.61803 2.28825I
4.27683 4.00000
u = 1.414210I
a = 0.618034 + 0.270091I
b = 0.618034 0.874032I
12.1725 4.00000
u = 1.414210I
a = 1.61803 + 1.85123I
b = 1.61803 + 2.28825I
4.27683 4.00000
14
IV. I
v
1
= ha, b v + 2, v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
v
0
a
4
=
1
0
a
9
=
v
0
a
11
=
0
v 2
a
12
=
2v 1
v 2
a
3
=
1
0
a
7
=
v
0
a
6
=
v
1
a
2
=
v + 1
1
a
1
=
v
1
a
10
=
2v + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
7
c
8
u
2
c
5
(u + 1)
2
c
6
, c
9
u
2
u 1
c
10
, c
11
, c
12
u
2
+ u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
c
6
, c
9
, c
10
c
11
, c
12
y
2
3y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
0.657974 14.0000
v = 2.61803
a = 0
b = 0.618034
7.23771 14.0000
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)
· (u
19
+ 26u
18
+ ··· + 17485u + 361)
c
2
((u 1)
2
)(u + 1)
4
(u
5
u
4
+ ··· + u 1)(u
19
+ 4u
18
+ ··· 105u 19)
c
3
, c
4
u
2
(u
2
+ 2)
2
(u
5
u
4
+ ··· + 3u 1)(u
19
2u
18
+ ··· 4u 4)
c
5
((u 1)
4
)(u + 1)
2
(u
5
+ u
4
+ ··· + u + 1)(u
19
+ 4u
18
+ ··· 105u 19)
c
6
u
5
(u
2
u 1)(u
2
+ u 1)
2
(u
19
+ 2u
18
+ ··· 384u 288)
c
7
, c
8
u
2
(u
2
+ 2)
2
(u
5
+ u
4
+ ··· + 3u + 1)(u
19
2u
18
+ ··· 4u 4)
c
9
((u + 1)
5
)(u
2
u 1)
3
(u
19
+ 9u
18
+ ··· 48u + 9)
c
10
u
5
(u
2
u 1)
2
(u
2
+ u 1)(u
19
+ 2u
18
+ ··· 384u 288)
c
11
, c
12
((u 1)
5
)(u
2
+ u 1)
3
(u
19
+ 9u
18
+ ··· 48u + 9)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
6
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
19
58y
18
+ ··· + 218537949y 130321)
c
2
, c
5
(y 1)
6
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
· (y
19
26y
18
+ ··· + 17485y 361)
c
3
, c
4
, c
7
c
8
y
2
(y + 2)
4
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
19
+ 16y
18
+ ··· + 336y 16)
c
6
, c
10
y
5
(y
2
3y + 1)
3
(y
19
+ 24y
18
+ ··· + 1101312y 82944)
c
9
, c
11
, c
12
((y 1)
5
)(y
2
3y + 1)
3
(y
19
5y
18
+ ··· + 3042y 81)
20