12n
0458
(K12n
0458
)
A knot diagram
1
Linearized knot diagam
3 6 11 10 2 1 4 3 7 8 9 7
Solving Sequence
3,11 4,9
12 8 7 1 6 2 5 10
c
3
c
11
c
8
c
7
c
12
c
6
c
2
c
5
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h5.47880 × 10
25
u
40
+ 7.88111 × 10
25
u
39
+ ··· + 1.50975 × 10
24
b + 6.96929 × 10
25
,
1.08127 × 10
26
u
40
1.53797 × 10
26
u
39
+ ··· + 1.50975 × 10
24
a 1.21442 × 10
26
, u
41
+ u
40
+ ··· + 2u + 1i
I
u
2
= h−2.49556 × 10
86
u
43
8.35365 × 10
86
u
42
+ ··· + 3.43675 × 10
87
b + 3.73757 × 10
87
,
2.75946 × 10
87
u
43
+ 1.12653 × 10
88
u
42
+ ··· + 5.84247 × 10
88
a + 3.07830 × 10
89
, u
44
+ 4u
43
+ ··· + 77u + 17i
I
u
3
= h−u
18
+ u
17
+ ··· + b + 4u, 4u
18
+ 4u
17
+ ··· + a 1, u
19
u
18
+ ··· 4u
2
+ 1i
I
u
4
= hb u 1, a u 1, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 106 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.48×10
25
u
40
+7.88×10
25
u
39
+· · ·+1.51×10
24
b+6.97×10
25
, 1.08×
10
26
u
40
1.54×10
26
u
39
+· · ·+1.51×10
24
a1.21×10
26
, u
41
+u
40
+· · ·+2u+1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
9
=
71.6189u
40
+ 101.869u
39
+ ··· + 340.999u + 80.4384
36.2894u
40
52.2014u
39
+ ··· 199.232u 46.1618
a
12
=
64.2074u
40
87.5660u
39
+ ··· 425.889u 95.1075
18.2487u
40
25.7511u
39
+ ··· 53.4475u 14.3937
a
8
=
107.908u
40
+ 154.070u
39
+ ··· + 540.231u + 126.600
36.2894u
40
52.2014u
39
+ ··· 199.232u 46.1618
a
7
=
107.908u
40
+ 154.070u
39
+ ··· + 541.231u + 126.600
36.2894u
40
52.2014u
39
+ ··· 199.232u 46.1618
a
1
=
197.492u
40
281.182u
39
+ ··· 1214.12u 264.909
0.0153376u
40
1.23868u
39
+ ··· + 111.193u + 23.1345
a
6
=
74.2253u
40
+ 243.405u
39
+ ··· + 1398.14u + 562.092
39.9044u
40
+ 24.6029u
39
+ ··· 18.7145u 94.6713
a
2
=
197.477u
40
279.943u
39
+ ··· 1325.31u 288.043
0.0153376u
40
1.23868u
39
+ ··· + 111.193u + 23.1345
a
5
=
64.8577u
40
25.7158u
39
+ ··· + 90.6679u + 163.055
22.8032u
40
1.56551u
39
+ ··· + 55.9091u + 43.7009
a
10
=
0.594704u
40
+ 4.62146u
39
+ ··· 162.562u 30.5253
46.5535u
40
66.4364u
39
+ ··· 207.880u 50.1886
(ii) Obstruction class = 1
(iii) Cusp Shapes =
46609776655609602573804741
1509752124425304287631895
u
40
555844712353330908256438968
1509752124425304287631895
u
39
+
···
4270771601823530319752574608
1509752124425304287631895
u
2076142798565092784971764701
1509752124425304287631895
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
41
+ 19u
40
+ ··· + 89u + 16
c
2
, c
5
u
41
+ 5u
40
+ ··· + 7u + 4
c
3
, c
7
u
41
+ u
40
+ ··· + 2u + 1
c
4
, c
8
u
41
9u
39
+ ··· 69u + 17
c
6
, c
12
u
41
+ 15u
40
+ ··· + 87u + 4
c
9
, c
11
u
41
4u
40
+ ··· + 27u + 1
c
10
u
41
26u
40
+ ··· + 23u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
41
+ 9y
40
+ ··· 3311y 256
c
2
, c
5
y
41
19y
40
+ ··· + 89y 16
c
3
, c
7
y
41
+ 17y
40
+ ··· 36y 1
c
4
, c
8
y
41
18y
40
+ ··· + 5577y 289
c
6
, c
12
y
41
+ y
40
+ ··· + 633y 16
c
9
, c
11
y
41
58y
40
+ ··· + 333y 1
c
10
y
41
+ 68y
39
+ ··· + 81y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.347021 + 1.021800I
a = 0.446471 + 0.717252I
b = 0.856068 + 0.901582I
2.01077 + 1.97128I 0
u = 0.347021 1.021800I
a = 0.446471 0.717252I
b = 0.856068 0.901582I
2.01077 1.97128I 0
u = 0.517326 + 0.952123I
a = 0.494773 + 0.392816I
b = 1.002680 + 0.556094I
2.33608 + 2.70211I 0
u = 0.517326 0.952123I
a = 0.494773 0.392816I
b = 1.002680 0.556094I
2.33608 2.70211I 0
u = 0.380066 + 0.811067I
a = 0.82614 + 1.79073I
b = 0.853726 0.187521I
4.94484 5.32421I 4.21074 + 0.90918I
u = 0.380066 0.811067I
a = 0.82614 1.79073I
b = 0.853726 + 0.187521I
4.94484 + 5.32421I 4.21074 0.90918I
u = 0.054668 + 1.145580I
a = 0.106091 + 1.208380I
b = 0.17829 + 1.44060I
1.57207 1.96637I 0
u = 0.054668 1.145580I
a = 0.106091 1.208380I
b = 0.17829 1.44060I
1.57207 + 1.96637I 0
u = 0.358415 + 0.770361I
a = 0.68843 + 2.01808I
b = 0.906548 0.088949I
6.85307 + 0.06384I 7.45973 + 4.03926I
u = 0.358415 0.770361I
a = 0.68843 2.01808I
b = 0.906548 + 0.088949I
6.85307 0.06384I 7.45973 4.03926I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.045169 + 0.822753I
a = 0.154528 + 1.094100I
b = 0.346455 + 0.374027I
1.46454 + 1.46331I 5.06919 4.70044I
u = 0.045169 0.822753I
a = 0.154528 1.094100I
b = 0.346455 0.374027I
1.46454 1.46331I 5.06919 + 4.70044I
u = 0.229168 + 0.751258I
a = 0.04740 + 1.82480I
b = 0.739876 + 0.180844I
1.64581 + 1.65716I 2.62674 4.29220I
u = 0.229168 0.751258I
a = 0.04740 1.82480I
b = 0.739876 0.180844I
1.64581 1.65716I 2.62674 + 4.29220I
u = 0.325313 + 0.680386I
a = 0.29563 + 2.60667I
b = 1.039970 + 0.122963I
7.08787 2.96529I 8.51449 + 5.47804I
u = 0.325313 0.680386I
a = 0.29563 2.60667I
b = 1.039970 0.122963I
7.08787 + 2.96529I 8.51449 5.47804I
u = 0.314460 + 0.648327I
a = 0.08581 + 2.85549I
b = 1.088460 + 0.205257I
5.38587 + 8.24752I 6.33209 10.48383I
u = 0.314460 0.648327I
a = 0.08581 2.85549I
b = 1.088460 0.205257I
5.38587 8.24752I 6.33209 + 10.48383I
u = 1.054420 + 0.767365I
a = 0.225727 0.075550I
b = 0.757531 0.087155I
5.03812 + 0.55979I 0
u = 1.054420 0.767365I
a = 0.225727 + 0.075550I
b = 0.757531 + 0.087155I
5.03812 0.55979I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.954640 + 0.895605I
a = 0.323203 0.114281I
b = 0.907475 0.104542I
1.12434 + 3.55718I 0
u = 0.954640 0.895605I
a = 0.323203 + 0.114281I
b = 0.907475 + 0.104542I
1.12434 3.55718I 0
u = 0.652653
a = 0.0877425
b = 0.483905
1.46612 7.06880
u = 0.001515 + 0.601854I
a = 0.852039 + 0.542047I
b = 0.481262 + 0.639634I
0.81408 + 1.37351I 2.99559 3.76838I
u = 0.001515 0.601854I
a = 0.852039 0.542047I
b = 0.481262 0.639634I
0.81408 1.37351I 2.99559 + 3.76838I
u = 1.03621 + 0.97465I
a = 0.272897 0.206391I
b = 0.879946 0.246548I
4.42034 8.30464I 0
u = 1.03621 0.97465I
a = 0.272897 + 0.206391I
b = 0.879946 + 0.246548I
4.42034 + 8.30464I 0
u = 0.051342 + 0.543114I
a = 1.57833 + 0.32834I
b = 0.542371 + 0.798966I
1.14789 5.43637I 0.71682 + 6.54388I
u = 0.051342 0.543114I
a = 1.57833 0.32834I
b = 0.542371 0.798966I
1.14789 + 5.43637I 0.71682 6.54388I
u = 0.005268 + 0.490051I
a = 0.720841 0.530154I
b = 0.243798 + 0.805884I
2.19779 + 1.00862I 5.99392 1.40222I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.005268 0.490051I
a = 0.720841 + 0.530154I
b = 0.243798 0.805884I
2.19779 1.00862I 5.99392 + 1.40222I
u = 0.92388 + 1.21329I
a = 0.693432 0.848976I
b = 1.60443 0.79675I
7.22406 + 2.19782I 0
u = 0.92388 1.21329I
a = 0.693432 + 0.848976I
b = 1.60443 + 0.79675I
7.22406 2.19782I 0
u = 0.93985 + 1.21945I
a = 0.624751 0.961319I
b = 1.57161 0.93510I
8.66754 7.90114I 0
u = 0.93985 1.21945I
a = 0.624751 + 0.961319I
b = 1.57161 + 0.93510I
8.66754 + 7.90114I 0
u = 0.96302 + 1.20795I
a = 0.367468 0.971278I
b = 1.31719 1.03611I
1.99155 + 9.34995I 0
u = 0.96302 1.20795I
a = 0.367468 + 0.971278I
b = 1.31719 + 1.03611I
1.99155 9.34995I 0
u = 0.96655 + 1.22224I
a = 0.421833 1.155040I
b = 1.43574 1.19661I
7.8645 11.8540I 0
u = 0.96655 1.22224I
a = 0.421833 + 1.155040I
b = 1.43574 + 1.19661I
7.8645 + 11.8540I 0
u = 0.97295 + 1.22134I
a = 0.348119 1.207570I
b = 1.38255 1.27245I
5.7918 + 17.4569I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.97295 1.22134I
a = 0.348119 + 1.207570I
b = 1.38255 + 1.27245I
5.7918 17.4569I 0
9
II. I
u
2
= h−2.50 × 10
86
u
43
8.35 × 10
86
u
42
+ · · · + 3.44 × 10
87
b + 3.74 ×
10
87
, 2.76 × 10
87
u
43
+ 1.13 × 10
88
u
42
+ · · · + 5.84 × 10
88
a + 3.08 ×
10
89
, u
44
+ 4u
43
+ · · · + 77u + 17i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
9
=
0.0472311u
43
0.192817u
42
+ ··· 14.3118u 5.26884
0.0726141u
43
+ 0.243068u
42
+ ··· 1.78608u 1.08753
a
12
=
0.0360992u
43
0.157605u
42
+ ··· 15.0581u 5.83261
0.0702088u
43
+ 0.234463u
42
+ ··· 1.55171u 1.42798
a
8
=
0.119845u
43
0.435885u
42
+ ··· 12.5257u 4.18131
0.0726141u
43
+ 0.243068u
42
+ ··· 1.78608u 1.08753
a
7
=
0.0588235u
43
0.235294u
42
+ ··· 13u 4.52941
0.0610217u
43
+ 0.200591u
42
+ ··· + 0.525708u 0.348105
a
1
=
0.101101u
43
0.408588u
42
+ ··· 18.6194u 7.52962
0.00441605u
43
0.0127382u
42
+ ··· 3.21768u 1.61521
a
6
=
0.0490639u
43
0.254746u
42
+ ··· 9.79483u 5.26468
0.0362894u
43
+ 0.127630u
42
+ ··· 0.376828u 1.15074
a
2
=
0.105517u
43
0.395849u
42
+ ··· 15.4017u 5.91441
0.00441605u
43
0.0127382u
42
+ ··· 3.21768u 1.61521
a
5
=
0.142243u
43
+ 0.513366u
42
+ ··· + 14.5329u + 3.09094
0.00902369u
43
0.0430917u
42
+ ··· 3.30811u 1.10503
a
10
=
0.0606353u
43
0.229405u
42
+ ··· 7.19891u 3.39724
0.0456727u
43
0.162664u
42
+ ··· 4.30750u 1.00739
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.861289u
43
3.44599u
42
+ ··· 97.7115u 26.0425
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
22
+ 10u
21
+ ··· + 6u
2
+ 1)
2
c
2
, c
5
(u
22
2u
21
+ ··· 5u
3
+ 1)
2
c
3
, c
7
u
44
+ 4u
43
+ ··· + 77u + 17
c
4
, c
8
u
44
+ 2u
43
+ ··· 7681u + 1663
c
6
, c
12
(u
22
9u
21
+ ··· 27u + 8)
2
c
9
, c
11
u
44
3u
43
+ ··· 5634u + 459
c
10
(u
22
+ 9u
21
+ ··· + u + 2)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
22
+ 6y
21
+ ··· + 12y + 1)
2
c
2
, c
5
(y
22
10y
21
+ ··· + 6y
2
+ 1)
2
c
3
, c
7
y
44
8y
43
+ ··· + 1585y + 289
c
4
, c
8
y
44
20y
43
+ ··· + 60881257y + 2765569
c
6
, c
12
(y
22
5y
21
+ ··· 137y + 64)
2
c
9
, c
11
y
44
23y
43
+ ··· + 46259586y + 210681
c
10
(y
22
+ 3y
21
+ ··· + 43y + 4)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.466106 + 0.845310I
a = 0.120142 + 0.417834I
b = 1.67800 + 0.61371I
0.49172 + 7.76222I 0.81633 10.97056I
u = 0.466106 0.845310I
a = 0.120142 0.417834I
b = 1.67800 0.61371I
0.49172 7.76222I 0.81633 + 10.97056I
u = 0.612747 + 0.847167I
a = 0.309849 + 0.822684I
b = 1.14999 + 1.06245I
2.01009 + 2.56491I 5.72976 4.00419I
u = 0.612747 0.847167I
a = 0.309849 0.822684I
b = 1.14999 1.06245I
2.01009 2.56491I 5.72976 + 4.00419I
u = 0.899310 + 0.535213I
a = 1.22496 + 1.07887I
b = 0.208918 + 0.720383I
2.01009 2.56491I 5.72976 + 4.00419I
u = 0.899310 0.535213I
a = 1.22496 1.07887I
b = 0.208918 0.720383I
2.01009 + 2.56491I 5.72976 4.00419I
u = 0.667133 + 0.876190I
a = 0.565670 + 0.915397I
b = 0.73275 + 1.28707I
2.61181 5.56778I 6.67774 + 6.14625I
u = 0.667133 0.876190I
a = 0.565670 0.915397I
b = 0.73275 1.28707I
2.61181 + 5.56778I 6.67774 6.14625I
u = 0.420458 + 0.759517I
a = 0.0506571 + 0.0690852I
b = 1.51754 + 0.25724I
0.63374 3.32247I 4.93738 + 4.78079I
u = 0.420458 0.759517I
a = 0.0506571 0.0690852I
b = 1.51754 0.25724I
0.63374 + 3.32247I 4.93738 4.78079I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.592653 + 0.967467I
a = 0.548691 + 0.593530I
b = 0.351079 + 1.129330I
2.49866 + 0.61650I 5.58678 1.76375I
u = 0.592653 0.967467I
a = 0.548691 0.593530I
b = 0.351079 1.129330I
2.49866 0.61650I 5.58678 + 1.76375I
u = 0.510707 + 0.679843I
a = 0.82932 1.56718I
b = 1.70942 1.64533I
4.38951 + 8.87036I 2.10374 11.14588I
u = 0.510707 0.679843I
a = 0.82932 + 1.56718I
b = 1.70942 + 1.64533I
4.38951 8.87036I 2.10374 + 11.14588I
u = 0.748334 + 0.350797I
a = 1.67537 + 0.57034I
b = 0.087323 + 0.207716I
2.61181 + 5.56778I 6.67774 6.14625I
u = 0.748334 0.350797I
a = 1.67537 0.57034I
b = 0.087323 0.207716I
2.61181 5.56778I 6.67774 + 6.14625I
u = 0.438421 + 0.674226I
a = 0.90058 1.59216I
b = 1.81717 1.62217I
6.45761 3.23482I 6.36482 + 6.95069I
u = 0.438421 0.674226I
a = 0.90058 + 1.59216I
b = 1.81717 + 1.62217I
6.45761 + 3.23482I 6.36482 6.95069I
u = 0.784806 + 0.951389I
a = 0.431263 + 0.864629I
b = 0.541102 + 0.996237I
0.29493 + 2.91734I 2.41857 2.23849I
u = 0.784806 0.951389I
a = 0.431263 0.864629I
b = 0.541102 0.996237I
0.29493 2.91734I 2.41857 + 2.23849I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.149975 + 0.738011I
a = 0.89919 1.49365I
b = 2.06203 1.36914I
5.86334 6.33920I 7.62789 + 3.75640I
u = 0.149975 0.738011I
a = 0.89919 + 1.49365I
b = 2.06203 + 1.36914I
5.86334 + 6.33920I 7.62789 3.75640I
u = 0.229621 + 0.711467I
a = 0.93052 1.58410I
b = 2.01034 1.49221I
7.29150 + 0.70655I 9.80660 + 2.74214I
u = 0.229621 0.711467I
a = 0.93052 + 1.58410I
b = 2.01034 + 1.49221I
7.29150 0.70655I 9.80660 2.74214I
u = 1.057640 + 0.711303I
a = 0.72238 + 1.49263I
b = 0.394766 + 1.085170I
0.49172 7.76222I 0. + 10.97056I
u = 1.057640 0.711303I
a = 0.72238 1.49263I
b = 0.394766 1.085170I
0.49172 + 7.76222I 0. 10.97056I
u = 1.010300 + 0.819633I
a = 0.496055 + 1.296710I
b = 0.521329 + 1.021470I
0.63374 + 3.32247I 4.93738 4.78079I
u = 1.010300 0.819633I
a = 0.496055 1.296710I
b = 0.521329 1.021470I
0.63374 3.32247I 4.93738 + 4.78079I
u = 0.456405 + 0.493869I
a = 1.008840 0.278321I
b = 0.785235 0.137592I
0.29493 2.91734I 2.41857 + 2.23849I
u = 0.456405 0.493869I
a = 1.008840 + 0.278321I
b = 0.785235 + 0.137592I
0.29493 + 2.91734I 2.41857 2.23849I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.352482 + 0.507121I
a = 1.07753 1.61193I
b = 1.91155 1.49298I
0.543309 + 0.646462I 7.41895 11.49115I
u = 0.352482 0.507121I
a = 1.07753 + 1.61193I
b = 1.91155 + 1.49298I
0.543309 0.646462I 7.41895 + 11.49115I
u = 0.439360 + 0.215788I
a = 2.17643 0.43074I
b = 0.249933 0.497594I
2.49866 0.61650I 5.58678 + 1.76375I
u = 0.439360 0.215788I
a = 2.17643 + 0.43074I
b = 0.249933 + 0.497594I
2.49866 + 0.61650I 5.58678 1.76375I
u = 1.42727 + 1.17674I
a = 0.732491 + 0.810544I
b = 0.999624 + 0.416425I
5.86334 + 6.33920I 0
u = 1.42727 1.17674I
a = 0.732491 0.810544I
b = 0.999624 0.416425I
5.86334 6.33920I 0
u = 1.58647 + 1.01845I
a = 0.919715 + 0.087483I
b = 0.855383 0.305806I
4.38951 8.87036I 0
u = 1.58647 1.01845I
a = 0.919715 0.087483I
b = 0.855383 + 0.305806I
4.38951 + 8.87036I 0
u = 1.49066 + 1.18106I
a = 0.792313 + 0.634501I
b = 0.974820 + 0.249567I
7.29150 0.70655I 0
u = 1.49066 1.18106I
a = 0.792313 0.634501I
b = 0.974820 0.249567I
7.29150 + 0.70655I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.59443 + 1.07242I
a = 0.889783 + 0.221269I
b = 0.883190 0.162509I
6.45761 + 3.23482I 0
u = 1.59443 1.07242I
a = 0.889783 0.221269I
b = 0.883190 + 0.162509I
6.45761 3.23482I 0
u = 1.75816 + 1.21062I
a = 0.587756 + 0.268789I
b = 0.621112 + 0.027345I
0.543309 0.646462I 0
u = 1.75816 1.21062I
a = 0.587756 0.268789I
b = 0.621112 0.027345I
0.543309 + 0.646462I 0
17
III.
I
u
3
= h−u
18
+u
17
+· · ·+b+4u, 4u
18
+4u
17
+· · ·+a1, u
19
u
18
+· · ·−4u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u
2
a
9
=
4u
18
4u
17
+ ··· 8u + 1
u
18
u
17
+ ··· + u
2
4u
a
12
=
8u
18
+ 9u
17
+ ··· + 14u 4
4u
18
+ 4u
17
+ ··· + 9u 1
a
8
=
3u
18
3u
17
+ ··· 4u + 1
u
18
u
17
+ ··· + u
2
4u
a
7
=
3u
18
3u
17
+ ··· 5u + 1
u
18
u
17
+ ··· + u
2
4u
a
1
=
u
18
+ 2u
16
+ ··· + 5u
2
2
2u
18
3u
17
+ ··· 3u + 2
a
6
=
4u
18
+ 5u
17
+ ··· 6u
2
+ 8u
3u
18
3u
17
+ ··· + 9u
3
3u
a
2
=
3u
18
+ 3u
17
+ ··· + 3u 4
2u
18
3u
17
+ ··· 3u + 2
a
5
=
2u
18
+ 3u
17
+ ··· 3u
3
1
u
18
+ 4u
17
+ ··· + 3u 5
a
10
=
u
18
+ 2u
17
+ ··· + 2u 2
3u
18
+ 3u
17
+ ··· + 5u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
18
+ 12u
17
+ u
16
22u
15
16u
14
+ 59u
13
18u
12
76u
11
+
20u
10
+ 87u
9
54u
8
93u
7
+ 68u
6
+ 56u
5
50u
4
29u
3
+ 45u
2
+ 11u 15
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
10u
18
+ ··· + 4u 1
c
2
u
19
+ 2u
18
+ ··· 2u 1
c
3
, c
7
u
19
u
18
+ ··· 4u
2
+ 1
c
4
, c
8
u
19
4u
17
+ ··· u + 1
c
5
u
19
2u
18
+ ··· 2u + 1
c
6
u
19
6u
18
+ ··· + 14u 3
c
9
, c
11
u
19
8u
18
+ ··· + 5u 1
c
10
u
19
+ 11u
18
+ ··· + u 3
c
12
u
19
+ 6u
18
+ ··· + 14u + 3
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 2y
18
+ ··· + 74y
3
1
c
2
, c
5
y
19
10y
18
+ ··· + 4y 1
c
3
, c
7
y
19
5y
18
+ ··· + 8y 1
c
4
, c
8
y
19
8y
18
+ ··· + 5y 1
c
6
, c
12
y
19
+ 6y
18
+ ··· + 88y 9
c
9
, c
11
y
19
16y
17
+ ··· 19y 1
c
10
y
19
3y
18
+ ··· + 217y 9
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.571670 + 0.772339I
a = 1.062330 + 0.376696I
b = 0.619150 + 0.836486I
1.93329 0.79135I 1.90450 + 1.96423I
u = 0.571670 0.772339I
a = 1.062330 0.376696I
b = 0.619150 0.836486I
1.93329 + 0.79135I 1.90450 1.96423I
u = 0.691700 + 0.817412I
a = 0.700220 + 0.415999I
b = 0.603256 + 0.712894I
0.67906 + 4.36107I 0.50991 7.74806I
u = 0.691700 0.817412I
a = 0.700220 0.415999I
b = 0.603256 0.712894I
0.67906 4.36107I 0.50991 + 7.74806I
u = 0.694686 + 0.594925I
a = 0.687377 + 1.111670I
b = 0.830443 + 0.711186I
0.66120 + 2.86463I 0.58084 3.68051I
u = 0.694686 0.594925I
a = 0.687377 1.111670I
b = 0.830443 0.711186I
0.66120 2.86463I 0.58084 + 3.68051I
u = 0.901419
a = 1.36528
b = 1.10936
0.308220 0.909270
u = 0.590402 + 0.625214I
a = 1.20330 + 1.01252I
b = 0.798416 + 0.845493I
1.76829 6.62156I 2.87860 + 10.87292I
u = 0.590402 0.625214I
a = 1.20330 1.01252I
b = 0.798416 0.845493I
1.76829 + 6.62156I 2.87860 10.87292I
u = 0.769919 + 0.066620I
a = 2.09450 + 0.55481I
b = 1.289190 + 0.111552I
6.31789 1.80381I 3.64499 + 0.37370I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.769919 0.066620I
a = 2.09450 0.55481I
b = 1.289190 0.111552I
6.31789 + 1.80381I 3.64499 0.37370I
u = 0.756714 + 0.118401I
a = 1.98867 + 0.99926I
b = 1.289920 + 0.201830I
4.58239 + 7.30195I 0.96040 5.11591I
u = 0.756714 0.118401I
a = 1.98867 0.99926I
b = 1.289920 0.201830I
4.58239 7.30195I 0.96040 + 5.11591I
u = 0.966965 + 0.774347I
a = 0.231110 + 0.472518I
b = 0.630095 + 0.504581I
2.00054 + 3.89777I 3.98253 5.34580I
u = 0.966965 0.774347I
a = 0.231110 0.472518I
b = 0.630095 0.504581I
2.00054 3.89777I 3.98253 + 5.34580I
u = 1.100580 + 0.706359I
a = 0.062826 + 0.442679I
b = 0.643531 + 0.413021I
5.47313 + 0.16274I 9.10286 + 4.27042I
u = 1.100580 0.706359I
a = 0.062826 0.442679I
b = 0.643531 0.413021I
5.47313 0.16274I 9.10286 4.27042I
u = 1.028200 + 0.886045I
a = 0.213453 + 0.338188I
b = 0.558115 + 0.480952I
5.11861 8.27352I 8.71133 + 6.81608I
u = 1.028200 0.886045I
a = 0.213453 0.338188I
b = 0.558115 0.480952I
5.11861 + 8.27352I 8.71133 6.81608I
22
IV. I
u
4
= hb u 1, a u 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
11
=
0
u
a
4
=
1
u 1
a
9
=
u + 1
u + 1
a
12
=
u 1
1
a
8
=
0
u + 1
a
7
=
u + 1
1
a
1
=
u 1
1
a
6
=
u + 1
1
a
2
=
u
1
a
5
=
1
0
a
10
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
9
c
11
(u 1)
2
c
3
, c
4
, c
7
c
8
u
2
+ u + 1
c
5
(u + 1)
2
c
6
, c
10
, c
12
u
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
9
, c
11
(y 1)
2
c
3
, c
4
, c
7
c
8
y
2
+ y + 1
c
6
, c
10
, c
12
y
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
0 3.00000
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 0.866025I
0 3.00000
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
19
10u
18
+ ··· + 4u 1)(u
22
+ 10u
21
+ ··· + 6u
2
+ 1)
2
· (u
41
+ 19u
40
+ ··· + 89u + 16)
c
2
((u 1)
2
)(u
19
+ 2u
18
+ ··· 2u 1)(u
22
2u
21
+ ··· 5u
3
+ 1)
2
· (u
41
+ 5u
40
+ ··· + 7u + 4)
c
3
, c
7
(u
2
+ u + 1)(u
19
u
18
+ ··· 4u
2
+ 1)(u
41
+ u
40
+ ··· + 2u + 1)
· (u
44
+ 4u
43
+ ··· + 77u + 17)
c
4
, c
8
(u
2
+ u + 1)(u
19
4u
17
+ ··· u + 1)(u
41
9u
39
+ ··· 69u + 17)
· (u
44
+ 2u
43
+ ··· 7681u + 1663)
c
5
((u + 1)
2
)(u
19
2u
18
+ ··· 2u + 1)(u
22
2u
21
+ ··· 5u
3
+ 1)
2
· (u
41
+ 5u
40
+ ··· + 7u + 4)
c
6
u
2
(u
19
6u
18
+ ··· + 14u 3)(u
22
9u
21
+ ··· 27u + 8)
2
· (u
41
+ 15u
40
+ ··· + 87u + 4)
c
9
, c
11
((u 1)
2
)(u
19
8u
18
+ ··· + 5u 1)(u
41
4u
40
+ ··· + 27u + 1)
· (u
44
3u
43
+ ··· 5634u + 459)
c
10
u
2
(u
19
+ 11u
18
+ ··· + u 3)(u
22
+ 9u
21
+ ··· + u + 2)
2
· (u
41
26u
40
+ ··· + 23u 2)
c
12
u
2
(u
19
+ 6u
18
+ ··· + 14u + 3)(u
22
9u
21
+ ··· 27u + 8)
2
· (u
41
+ 15u
40
+ ··· + 87u + 4)
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
19
+ 2y
18
+ ··· + 74y
3
1)(y
22
+ 6y
21
+ ··· + 12y + 1)
2
· (y
41
+ 9y
40
+ ··· 3311y 256)
c
2
, c
5
((y 1)
2
)(y
19
10y
18
+ ··· + 4y 1)(y
22
10y
21
+ ··· + 6y
2
+ 1)
2
· (y
41
19y
40
+ ··· + 89y 16)
c
3
, c
7
(y
2
+ y + 1)(y
19
5y
18
+ ··· + 8y 1)(y
41
+ 17y
40
+ ··· 36y 1)
· (y
44
8y
43
+ ··· + 1585y + 289)
c
4
, c
8
(y
2
+ y + 1)(y
19
8y
18
+ ··· + 5y 1)(y
41
18y
40
+ ··· + 5577y 289)
· (y
44
20y
43
+ ··· + 60881257y + 2765569)
c
6
, c
12
y
2
(y
19
+ 6y
18
+ ··· + 88y 9)(y
22
5y
21
+ ··· 137y + 64)
2
· (y
41
+ y
40
+ ··· + 633y 16)
c
9
, c
11
((y 1)
2
)(y
19
16y
17
+ ··· 19y 1)(y
41
58y
40
+ ··· + 333y 1)
· (y
44
23y
43
+ ··· + 46259586y + 210681)
c
10
y
2
(y
19
3y
18
+ ··· + 217y 9)(y
22
+ 3y
21
+ ··· + 43y + 4)
2
· (y
41
+ 68y
39
+ ··· + 81y 4)
28