12n
0459
(K12n
0459
)
A knot diagram
1
Linearized knot diagam
3 6 9 12 2 1 12 5 7 5 9 10
Solving Sequence
5,12 4,9
3 8 7 11 10 1 2 6
c
4
c
3
c
8
c
7
c
11
c
10
c
12
c
1
c
6
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 2.55290 × 10
42
u
36
+ 5.44795 × 10
42
u
35
+ ··· + 1.76508 × 10
43
a 3.00825 × 10
43
,
u
37
u
36
+ ··· + 3u 1i
I
u
2
= hb + u, 250u
18
299u
17
+ ··· + 73a + 547, u
19
u
18
+ ··· + 3u + 1i
I
u
3
= h2.39883 × 10
77
u
33
+ 4.38682 × 10
77
u
32
+ ··· + 2.11269 × 10
80
b + 4.67078 × 10
80
,
2.66819 × 10
80
u
33
6.63024 × 10
80
u
32
+ ··· + 4.21058 × 10
83
a 5.18491 × 10
83
,
u
34
+ u
33
+ ··· + 1952u 1993i
* 3 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 2.55 × 10
42
u
36
+ 5.45 × 10
42
u
35
+ · · · + 1.77 × 10
43
a
3.01 × 10
43
, u
37
u
36
+ · · · + 3u 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
9
=
0.144634u
36
0.308653u
35
+ ··· 1.70408u + 1.70432
u
a
3
=
0.0641583u
36
0.204773u
35
+ ··· 2.93838u + 1.14286
0.00595874u
36
0.0145660u
35
+ ··· + 0.258814u 0.0315982
a
8
=
0.144634u
36
0.308653u
35
+ ··· 0.704084u + 1.70432
u
a
7
=
0.144634u
36
0.308653u
35
+ ··· 0.704084u + 1.70432
0.0315982u
36
+ 0.0375570u
35
+ ··· + 0.363310u + 0.164019
a
11
=
0.287497u
36
+ 0.387357u
35
+ ··· + 0.523806u + 0.805473
0.0315982u
36
0.0375570u
35
+ ··· + 1.63669u 0.164019
a
10
=
0.255898u
36
+ 0.349800u
35
+ ··· + 2.16050u + 0.641454
0.0315982u
36
0.0375570u
35
+ ··· + 1.63669u 0.164019
a
1
=
0.113036u
36
+ 0.271096u
35
+ ··· + 3.34077u 1.86834
0.206163u
36
0.241526u
35
+ ··· 0.860551u + 0.362165
a
2
=
0.121719u
36
+ 0.0603587u
35
+ ··· + 2.89319u 1.94734
0.177072u
36
0.177109u
35
+ ··· 0.860687u + 0.281992
a
6
=
0.0205670u
36
0.0114078u
35
+ ··· 1.02788u + 1.87960
0.0935046u
36
+ 0.0800631u
35
+ ··· + 1.12160u + 0.0897229
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.05287u
36
+ 2.19238u
35
+ ··· + 12.4820u 10.7486
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
37
+ 19u
36
+ ··· + 13u + 4
c
2
, c
5
u
37
+ 5u
36
+ ··· + 11u + 2
c
3
, c
10
u
37
16u
35
+ ··· + 286u + 313
c
4
, c
8
u
37
+ u
36
+ ··· + 3u + 1
c
6
u
37
+ 15u
36
+ ··· + 1057u + 142
c
7
u
37
+ 33u
36
+ ··· + 2424832u + 131072
c
9
, c
12
u
37
+ 2u
36
+ ··· 4u + 1
c
11
u
37
20u
36
+ ··· + 3129u + 416
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
37
+ y
36
+ ··· + 417y 16
c
2
, c
5
y
37
19y
36
+ ··· + 13y 4
c
3
, c
10
y
37
32y
36
+ ··· + 1668y 97969
c
4
, c
8
y
37
53y
36
+ ··· + y 1
c
6
y
37
+ 17y
36
+ ··· + 321765y 20164
c
7
y
37
7y
36
+ ··· + 124554051584y 17179869184
c
9
, c
12
y
37
+ 18y
36
+ ··· + 52y 1
c
11
y
37
40y
36
+ ··· + 11555313y 173056
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.227341 + 1.006740I
a = 0.014320 + 0.531612I
b = 0.227341 + 1.006740I
2.19421 2.66186I 12.2194 + 11.4876I
u = 0.227341 1.006740I
a = 0.014320 0.531612I
b = 0.227341 1.006740I
2.19421 + 2.66186I 12.2194 11.4876I
u = 0.572877 + 0.421277I
a = 0.589584 0.431854I
b = 0.572877 + 0.421277I
4.23503 2.99580I 10.42564 + 0.99385I
u = 0.572877 0.421277I
a = 0.589584 + 0.431854I
b = 0.572877 0.421277I
4.23503 + 2.99580I 10.42564 0.99385I
u = 0.443470 + 0.512589I
a = 0.93334 2.14850I
b = 0.443470 + 0.512589I
2.92897 + 7.93095I 9.93339 5.60925I
u = 0.443470 0.512589I
a = 0.93334 + 2.14850I
b = 0.443470 0.512589I
2.92897 7.93095I 9.93339 + 5.60925I
u = 0.425682 + 0.515838I
a = 0.912897 0.668737I
b = 0.425682 + 0.515838I
4.36721 + 4.92237I 9.76383 6.76217I
u = 0.425682 0.515838I
a = 0.912897 + 0.668737I
b = 0.425682 0.515838I
4.36721 4.92237I 9.76383 + 6.76217I
u = 0.640765 + 0.065448I
a = 0.06676 + 1.55654I
b = 0.640765 + 0.065448I
0.561173 + 0.639753I 5.50967 0.34463I
u = 0.640765 0.065448I
a = 0.06676 1.55654I
b = 0.640765 0.065448I
0.561173 0.639753I 5.50967 + 0.34463I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.276215 + 0.533554I
a = 1.16500 2.16159I
b = 0.276215 + 0.533554I
3.55570 0.00267I 10.39254 + 2.55625I
u = 0.276215 0.533554I
a = 1.16500 + 2.16159I
b = 0.276215 0.533554I
3.55570 + 0.00267I 10.39254 2.55625I
u = 0.440393 + 0.380348I
a = 0.896498 0.271334I
b = 0.440393 + 0.380348I
1.26315 1.02773I 6.64941 + 3.71665I
u = 0.440393 0.380348I
a = 0.896498 + 0.271334I
b = 0.440393 0.380348I
1.26315 + 1.02773I 6.64941 3.71665I
u = 0.388482 + 0.417207I
a = 0.91985 2.32255I
b = 0.388482 + 0.417207I
0.15749 3.53597I 7.19576 + 1.75427I
u = 0.388482 0.417207I
a = 0.91985 + 2.32255I
b = 0.388482 0.417207I
0.15749 + 3.53597I 7.19576 1.75427I
u = 0.536439 + 0.152143I
a = 0.19810 2.15263I
b = 0.536439 + 0.152143I
1.28152 3.19239I 5.87746 + 5.99544I
u = 0.536439 0.152143I
a = 0.19810 + 2.15263I
b = 0.536439 0.152143I
1.28152 + 3.19239I 5.87746 5.99544I
u = 0.411639
a = 0.358793
b = 0.411639
0.908630 11.5680
u = 0.069113 + 0.352786I
a = 2.46626 1.42359I
b = 0.069113 + 0.352786I
0.90988 2.23770I 0.21125 + 2.16221I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.069113 0.352786I
a = 2.46626 + 1.42359I
b = 0.069113 0.352786I
0.90988 + 2.23770I 0.21125 2.16221I
u = 1.79797 + 0.39975I
a = 0.791512 + 0.386512I
b = 1.79797 + 0.39975I
10.49280 5.44002I 0
u = 1.79797 0.39975I
a = 0.791512 0.386512I
b = 1.79797 0.39975I
10.49280 + 5.44002I 0
u = 1.84834 + 0.40321I
a = 0.787306 + 0.304002I
b = 1.84834 + 0.40321I
7.74174 0.09044I 0
u = 1.84834 0.40321I
a = 0.787306 0.304002I
b = 1.84834 0.40321I
7.74174 + 0.09044I 0
u = 1.86346 + 0.35746I
a = 0.898519 + 0.269725I
b = 1.86346 + 0.35746I
12.94290 + 3.71649I 0
u = 1.86346 0.35746I
a = 0.898519 0.269725I
b = 1.86346 0.35746I
12.94290 3.71649I 0
u = 1.87706 + 0.37684I
a = 0.894002 + 0.031082I
b = 1.87706 + 0.37684I
5.46083 + 8.77952I 0
u = 1.87706 0.37684I
a = 0.894002 0.031082I
b = 1.87706 0.37684I
5.46083 8.77952I 0
u = 1.88332 + 0.36296I
a = 0.835463 + 0.083202I
b = 1.88332 + 0.36296I
5.07424 3.40985I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.88332 0.36296I
a = 0.835463 0.083202I
b = 1.88332 0.36296I
5.07424 + 3.40985I 0
u = 1.91093 + 0.40135I
a = 1.032100 + 0.006450I
b = 1.91093 + 0.40135I
9.1177 + 10.8968I 0
u = 1.91093 0.40135I
a = 1.032100 0.006450I
b = 1.91093 0.40135I
9.1177 10.8968I 0
u = 1.91805 + 0.38450I
a = 1.045410 + 0.056772I
b = 1.91805 + 0.38450I
13.7875 7.1044I 0
u = 1.91805 0.38450I
a = 1.045410 0.056772I
b = 1.91805 0.38450I
13.7875 + 7.1044I 0
u = 1.92006 + 0.40960I
a = 1.059660 0.009858I
b = 1.92006 + 0.40960I
12.0188 16.0848I 0
u = 1.92006 0.40960I
a = 1.059660 + 0.009858I
b = 1.92006 0.40960I
12.0188 + 16.0848I 0
8
II. I
u
2
= hb + u, 250u
18
299u
17
+ · · · + 73a + 547, u
19
u
18
+ · · · + 3u + 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
9
=
3.42466u
18
+ 4.09589u
17
+ ··· 5.61644u 7.49315
u
a
3
=
0.219178u
18
+ 0.630137u
17
+ ··· 0.479452u + 1.61644
0.219178u
18
0.630137u
17
+ ··· + 0.479452u + 0.383562
a
8
=
3.42466u
18
+ 4.09589u
17
+ ··· 6.61644u 7.49315
u
a
7
=
3.42466u
18
+ 4.09589u
17
+ ··· 6.61644u 7.49315
0.383562u
18
0.602740u
17
+ ··· 2.41096u + 0.671233
a
11
=
2.80822u
18
+ 3.69863u
17
+ ··· 2.20548u 5.16438
0.383562u
18
0.602740u
17
+ ··· 0.410959u + 0.671233
a
10
=
2.42466u
18
+ 3.09589u
17
+ ··· 2.61644u 4.49315
0.383562u
18
0.602740u
17
+ ··· 0.410959u + 0.671233
a
1
=
3.04110u
18
3.49315u
17
+ ··· + 6.02740u + 6.82192
0.0273973u
18
+ 0.671233u
17
+ ··· + 2.68493u 0.452055
a
2
=
4.10959u
18
4.31507u
17
+ ··· + 2.73973u + 8.19178
0.561644u
18
+ 0.739726u
17
+ ··· + 2.95890u 0.232877
a
6
=
3.30137u
18
+ 4.61644u
17
+ ··· 1.53425u 7.02740
0.0547945u
18
0.657534u
17
+ ··· 0.630137u + 1.09589
(ii) Obstruction class = 1
(iii) Cusp Shapes =
128
73
u
18
149
73
u
17
+ ··· +
2032
73
u +
589
73
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
10u
18
+ ··· + 4u 1
c
2
u
19
+ 2u
18
+ ··· + 2u + 1
c
3
, c
10
u
19
9u
17
+ ··· + 5u
2
+ 1
c
4
, c
8
u
19
u
18
+ ··· + 3u + 1
c
5
u
19
2u
18
+ ··· + 2u 1
c
6
u
19
6u
18
+ ··· + 2u
2
1
c
7
u
19
2u
18
+ ··· 2u + 1
c
9
, c
12
u
19
2u
18
+ ··· 2u + 1
c
11
u
19
+ 17u
18
+ ··· + 126u + 13
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 2y
18
+ ··· + 8y 1
c
2
, c
5
y
19
10y
18
+ ··· + 4y 1
c
3
, c
10
y
19
18y
18
+ ··· 10y 1
c
4
, c
8
y
19
15y
18
+ ··· + 3y 1
c
6
y
19
+ 6y
18
+ ··· + 4y 1
c
7
y
19
6y
18
+ ··· + 4y 1
c
9
, c
12
y
19
4y
18
+ ··· + 6y 1
c
11
y
19
19y
18
+ ··· 1076y 169
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.389670 + 0.971259I
a = 0.122229 0.627078I
b = 0.389670 0.971259I
2.33089 + 2.35439I 2.65418 + 9.07433I
u = 0.389670 0.971259I
a = 0.122229 + 0.627078I
b = 0.389670 + 0.971259I
2.33089 2.35439I 2.65418 9.07433I
u = 0.107461 + 0.844602I
a = 0.493610 0.405220I
b = 0.107461 0.844602I
2.97743 + 2.82971I 1.23971 7.37257I
u = 0.107461 0.844602I
a = 0.493610 + 0.405220I
b = 0.107461 + 0.844602I
2.97743 2.82971I 1.23971 + 7.37257I
u = 0.297145 + 0.782682I
a = 1.072240 + 0.413603I
b = 0.297145 0.782682I
1.69545 9.35446I 5.05835 + 8.47597I
u = 0.297145 0.782682I
a = 1.072240 0.413603I
b = 0.297145 + 0.782682I
1.69545 + 9.35446I 5.05835 8.47597I
u = 0.219141 + 0.729049I
a = 1.127880 + 0.213922I
b = 0.219141 0.729049I
0.95654 + 4.52756I 1.42515 5.36291I
u = 0.219141 0.729049I
a = 1.127880 0.213922I
b = 0.219141 + 0.729049I
0.95654 4.52756I 1.42515 + 5.36291I
u = 0.347645 + 0.580389I
a = 1.49707 + 0.47525I
b = 0.347645 0.580389I
3.09155 1.28314I 7.80963 + 3.01643I
u = 0.347645 0.580389I
a = 1.49707 0.47525I
b = 0.347645 + 0.580389I
3.09155 + 1.28314I 7.80963 3.01643I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.409426 + 0.038014I
a = 1.22838 2.29649I
b = 0.409426 0.038014I
1.45073 2.37737I 14.4553 + 5.2559I
u = 0.409426 0.038014I
a = 1.22838 + 2.29649I
b = 0.409426 + 0.038014I
1.45073 + 2.37737I 14.4553 5.2559I
u = 1.63934 + 0.02428I
a = 1.081950 0.322533I
b = 1.63934 0.02428I
8.75263 + 5.21255I 9.20929 3.46517I
u = 1.63934 0.02428I
a = 1.081950 + 0.322533I
b = 1.63934 + 0.02428I
8.75263 5.21255I 9.20929 + 3.46517I
u = 1.70890 + 0.02593I
a = 1.228870 + 0.191361I
b = 1.70890 0.02593I
9.57662 + 2.62847I 9.72201 4.27468I
u = 1.70890 0.02593I
a = 1.228870 0.191361I
b = 1.70890 + 0.02593I
9.57662 2.62847I 9.72201 + 4.27468I
u = 1.71417 + 0.03393I
a = 1.039940 0.168963I
b = 1.71417 0.03393I
6.19104 0.62856I 6.47218 0.41177I
u = 1.71417 0.03393I
a = 1.039940 + 0.168963I
b = 1.71417 + 0.03393I
6.19104 + 0.62856I 6.47218 + 0.41177I
u = 1.73618
a = 1.22509
b = 1.73618
6.94142 2.86710
13
III. I
u
3
= h2.40 × 10
77
u
33
+ 4.39 × 10
77
u
32
+ · · · + 2.11 × 10
80
b + 4.67 ×
10
80
, 2.67 × 10
80
u
33
6.63 × 10
80
u
32
+ · · · + 4.21 × 10
83
a 5.18 ×
10
83
, u
34
+ u
33
+ · · · + 1952u 1993i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
4
=
1
u
2
a
9
=
0.000633687u
33
+ 0.00157466u
32
+ ··· 1.38149u + 1.23140
0.00113544u
33
0.00207642u
32
+ ··· 0.586403u 2.21083
a
3
=
0.00161924u
33
0.00401377u
32
+ ··· 1.64818u 2.45216
0.00145092u
33
+ 0.00405054u
32
+ ··· 2.20190u + 1.96335
a
8
=
0.000501756u
33
0.000501756u
32
+ ··· 1.96789u 0.979428
0.00113544u
33
0.00207642u
32
+ ··· 0.586403u 2.21083
a
7
=
0.000501756u
33
0.000501756u
32
+ ··· 1.96789u 0.979428
0.00113544u
33
0.00207642u
32
+ ··· + 0.413597u 2.21083
a
11
=
0.00225250u
33
+ 0.00558537u
32
+ ··· 0.926455u + 2.18386
0.00288618u
33
0.00716003u
32
+ ··· + 3.30794u 3.41526
a
10
=
0.000633687u
33
0.00157466u
32
+ ··· + 2.38149u 1.23140
0.00288618u
33
0.00716003u
32
+ ··· + 3.30794u 3.41526
a
1
=
0.000428587u
33
0.000572264u
32
+ ··· + 0.221236u 1.56686
0.00234022u
33
+ 0.00587590u
32
+ ··· + 1.14397u + 2.65445
a
2
=
0.00298530u
33
+ 0.00738719u
32
+ ··· 1.07544u + 3.26522
0.00158678u
33
0.00381361u
32
+ ··· 0.818276u 3.70164
a
6
=
0.000923865u
33
+ 0.00208460u
32
+ ··· + 1.06868u + 2.80386
0.000581990u
33
+ 0.000749672u
32
+ ··· + 2.17844u + 2.36276
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00320571u
33
+ 0.00635032u
32
+ ··· + 0.739925u + 0.207764
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
17
+ 9u
16
+ ··· + u + 1)
2
c
2
, c
5
(u
17
u
16
+ ··· + u 1)
2
c
3
, c
10
u
34
u
33
+ ··· + 116748u 21241
c
4
, c
8
u
34
u
33
+ ··· 1952u 1993
c
6
(u
17
3u
16
+ ··· + 9u 3)
2
c
7
(u 1)
34
c
9
, c
12
u
34
+ 15u
33
+ ··· + 284u + 23
c
11
(u
17
+ 15u
16
+ ··· 15u + 3)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
17
y
16
+ ··· + 9y 1)
2
c
2
, c
5
(y
17
9y
16
+ ··· + y 1)
2
c
3
, c
10
y
34
33y
33
+ ··· 8863869996y + 451180081
c
4
, c
8
y
34
45y
33
+ ··· 19443396y + 3972049
c
6
(y
17
+ 11y
16
+ ··· + 57y 9)
2
c
7
(y 1)
34
c
9
, c
12
y
34
5y
33
+ ··· + 580y + 529
c
11
(y
17
33y
16
+ ··· 15y 9)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.167398 + 1.144780I
a = 0.014539 + 0.424029I
b = 0.139598 + 0.431211I
2.19127 2.39923I 7.13400 + 3.27109I
u = 0.167398 1.144780I
a = 0.014539 0.424029I
b = 0.139598 0.431211I
2.19127 + 2.39923I 7.13400 3.27109I
u = 0.622028 + 0.358140I
a = 0.443652 0.412413I
b = 0.763740 + 1.107580I
4.71195 + 0.50801I 13.57451 + 0.23246I
u = 0.622028 0.358140I
a = 0.443652 + 0.412413I
b = 0.763740 1.107580I
4.71195 0.50801I 13.57451 0.23246I
u = 0.763740 + 1.107580I
a = 0.200081 + 0.253771I
b = 0.622028 + 0.358140I
4.71195 + 0.50801I 13.57451 + 0.23246I
u = 0.763740 1.107580I
a = 0.200081 0.253771I
b = 0.622028 0.358140I
4.71195 0.50801I 13.57451 0.23246I
u = 0.612488 + 1.252450I
a = 0.160762 + 0.357838I
b = 0.475864 + 0.286501I
0.42874 3.91820I 8.40216 + 2.39256I
u = 0.612488 1.252450I
a = 0.160762 0.357838I
b = 0.475864 0.286501I
0.42874 + 3.91820I 8.40216 2.39256I
u = 0.475864 + 0.286501I
a = 0.929876 0.323850I
b = 0.612488 + 1.252450I
0.42874 3.91820I 8.40216 + 2.39256I
u = 0.475864 0.286501I
a = 0.929876 + 0.323850I
b = 0.612488 1.252450I
0.42874 + 3.91820I 8.40216 2.39256I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.507585 + 0.207409I
a = 1.006380 0.653748I
b = 0.68185 + 1.34359I
3.16740 + 8.83664I 11.62632 5.87120I
u = 0.507585 0.207409I
a = 1.006380 + 0.653748I
b = 0.68185 1.34359I
3.16740 8.83664I 11.62632 + 5.87120I
u = 1.46214 + 0.04893I
a = 1.35960 0.49813I
b = 2.04276 + 0.52099I
10.22540 + 6.09306I 15.2930 6.8742I
u = 1.46214 0.04893I
a = 1.35960 + 0.49813I
b = 2.04276 0.52099I
10.22540 6.09306I 15.2930 + 6.8742I
u = 1.49197 + 0.07442I
a = 1.311960 0.394189I
b = 1.98055 + 0.42754I
7.27776 1.70542I 12.10923 + 4.02096I
u = 1.49197 0.07442I
a = 1.311960 + 0.394189I
b = 1.98055 0.42754I
7.27776 + 1.70542I 12.10923 4.02096I
u = 0.68185 + 1.34359I
a = 0.207231 + 0.384441I
b = 0.507585 + 0.207409I
3.16740 + 8.83664I 11.62632 5.87120I
u = 0.68185 1.34359I
a = 0.207231 0.384441I
b = 0.507585 0.207409I
3.16740 8.83664I 11.62632 + 5.87120I
u = 1.51009 + 0.03397I
a = 1.44977 0.35194I
b = 2.11165 + 0.36683I
10.72210 2.05778I 17.0193 + 0.3782I
u = 1.51009 0.03397I
a = 1.44977 + 0.35194I
b = 2.11165 0.36683I
10.72210 + 2.05778I 17.0193 0.3782I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.49205 + 0.25792I
a = 0.992537 0.309405I
b = 1.64331 + 0.42190I
5.45645 1.83062I 8.40697 + 5.22267I
u = 1.49205 0.25792I
a = 0.992537 + 0.309405I
b = 1.64331 0.42190I
5.45645 + 1.83062I 8.40697 5.22267I
u = 0.139598 + 0.431211I
a = 0.512141 + 0.954274I
b = 0.167398 + 1.144780I
2.19127 2.39923I 7.13400 + 3.27109I
u = 0.139598 0.431211I
a = 0.512141 0.954274I
b = 0.167398 1.144780I
2.19127 + 2.39923I 7.13400 3.27109I
u = 1.59159
a = 1.35109
b = 1.97939
7.58450 18.8690
u = 1.64331 + 0.42190I
a = 0.921155 0.111350I
b = 1.49205 + 0.25792I
5.45645 1.83062I 8.40697 + 5.22267I
u = 1.64331 0.42190I
a = 0.921155 + 0.111350I
b = 1.49205 0.25792I
5.45645 + 1.83062I 8.40697 5.22267I
u = 1.97939
a = 1.08639
b = 1.59159
7.58450 18.8690
u = 1.98055 + 0.42754I
a = 1.009540 + 0.029722I
b = 1.49197 + 0.07442I
7.27776 1.70542I 0
u = 1.98055 0.42754I
a = 1.009540 0.029722I
b = 1.49197 0.07442I
7.27776 + 1.70542I 0
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 2.04276 + 0.52099I
a = 1.002510 + 0.068296I
b = 1.46214 + 0.04893I
10.22540 + 6.09306I 0
u = 2.04276 0.52099I
a = 1.002510 0.068296I
b = 1.46214 0.04893I
10.22540 6.09306I 0
u = 2.11165 + 0.36683I
a = 1.050400 + 0.045887I
b = 1.51009 + 0.03397I
10.72210 2.05778I 0
u = 2.11165 0.36683I
a = 1.050400 0.045887I
b = 1.51009 0.03397I
10.72210 + 2.05778I 0
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
17
+ 9u
16
+ ··· + u + 1)
2
)(u
19
10u
18
+ ··· + 4u 1)
· (u
37
+ 19u
36
+ ··· + 13u + 4)
c
2
((u
17
u
16
+ ··· + u 1)
2
)(u
19
+ 2u
18
+ ··· + 2u + 1)
· (u
37
+ 5u
36
+ ··· + 11u + 2)
c
3
, c
10
(u
19
9u
17
+ ··· + 5u
2
+ 1)(u
34
u
33
+ ··· + 116748u 21241)
· (u
37
16u
35
+ ··· + 286u + 313)
c
4
, c
8
(u
19
u
18
+ ··· + 3u + 1)(u
34
u
33
+ ··· 1952u 1993)
· (u
37
+ u
36
+ ··· + 3u + 1)
c
5
((u
17
u
16
+ ··· + u 1)
2
)(u
19
2u
18
+ ··· + 2u 1)
· (u
37
+ 5u
36
+ ··· + 11u + 2)
c
6
((u
17
3u
16
+ ··· + 9u 3)
2
)(u
19
6u
18
+ ··· + 2u
2
1)
· (u
37
+ 15u
36
+ ··· + 1057u + 142)
c
7
((u 1)
34
)(u
19
2u
18
+ ··· 2u + 1)
· (u
37
+ 33u
36
+ ··· + 2424832u + 131072)
c
9
, c
12
(u
19
2u
18
+ ··· 2u + 1)(u
34
+ 15u
33
+ ··· + 284u + 23)
· (u
37
+ 2u
36
+ ··· 4u + 1)
c
11
((u
17
+ 15u
16
+ ··· 15u + 3)
2
)(u
19
+ 17u
18
+ ··· + 126u + 13)
· (u
37
20u
36
+ ··· + 3129u + 416)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
17
y
16
+ ··· + 9y 1)
2
)(y
19
+ 2y
18
+ ··· + 8y 1)
· (y
37
+ y
36
+ ··· + 417y 16)
c
2
, c
5
((y
17
9y
16
+ ··· + y 1)
2
)(y
19
10y
18
+ ··· + 4y 1)
· (y
37
19y
36
+ ··· + 13y 4)
c
3
, c
10
(y
19
18y
18
+ ··· 10y 1)
· (y
34
33y
33
+ ··· 8863869996y + 451180081)
· (y
37
32y
36
+ ··· + 1668y 97969)
c
4
, c
8
(y
19
15y
18
+ ··· + 3y 1)
· (y
34
45y
33
+ ··· 19443396y + 3972049)
· (y
37
53y
36
+ ··· + y 1)
c
6
((y
17
+ 11y
16
+ ··· + 57y 9)
2
)(y
19
+ 6y
18
+ ··· + 4y 1)
· (y
37
+ 17y
36
+ ··· + 321765y 20164)
c
7
((y 1)
34
)(y
19
6y
18
+ ··· + 4y 1)
· (y
37
7y
36
+ ··· + 124554051584y 17179869184)
c
9
, c
12
(y
19
4y
18
+ ··· + 6y 1)(y
34
5y
33
+ ··· + 580y + 529)
· (y
37
+ 18y
36
+ ··· + 52y 1)
c
11
((y
17
33y
16
+ ··· 15y 9)
2
)(y
19
19y
18
+ ··· 1076y 169)
· (y
37
40y
36
+ ··· + 11555313y 173056)
22