12n
0460
(K12n
0460
)
A knot diagram
1
Linearized knot diagam
3 6 9 8 7 2 12 11 12 4 5 9
Solving Sequence
8,11 5,9
12 1 4 3 7 6 2 10
c
8
c
11
c
12
c
4
c
3
c
7
c
5
c
2
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1248355972972u
23
21816995305526u
22
+ ··· + 1521391151543b 18832007879252,
18832007879252u
23
332734361961676u
22
+ ··· + 7606955757715a 305928879409436,
u
24
+ 18u
23
+ ··· + 63u + 5i
I
u
2
= h−u
13
+ 3u
12
2u
11
9u
10
+ 22u
9
16u
8
20u
7
+ 55u
6
50u
5
u
4
+ 46u
3
53u
2
+ b + 28u 8,
8u
13
69u
12
+ ··· + 13a 164, u
14
7u
13
+ ··· 66u + 13i
I
u
3
= hu
11
3u
10
+ 5u
9
4u
8
+ 4u
7
5u
6
+ 7u
5
4u
4
+ 3u
3
2au 3u
2
+ 2b + 5u 4,
4u
11
a + u
11
+ ··· + 4a + 24,
u
12
3u
11
+ 7u
10
10u
9
+ 16u
8
19u
7
+ 25u
6
22u
5
+ 23u
4
15u
3
+ 15u
2
6u + 4i
I
v
1
= ha, v
2
+ b 2v + 2, v
4
3v
3
+ 5v
2
3v + 1i
I
v
2
= ha, b + 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.25 × 10
12
u
23
2.18 × 10
13
u
22
+ · · · + 1.52 × 10
12
b 1.88 ×
10
13
, 1.88 × 10
13
u
23
3.33 × 10
14
u
22
+ · · · + 7.61 × 10
12
a 3.06 ×
10
14
, u
24
+ 18u
23
+ · · · + 63u + 5i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
5
=
2.47563u
23
+ 43.7408u
22
+ ··· + 399.917u + 40.2170
0.820536u
23
+ 14.3402u
22
+ ··· + 115.748u + 12.3781
a
9
=
1
u
2
a
12
=
0.136050u
23
+ 2.29322u
22
+ ··· + 6.95177u + 1.65823
0.155672u
23
+ 2.68503u
22
+ ··· + 7.91289u + 0.680248
a
1
=
0.174665u
23
+ 2.79784u
22
+ ··· + 5.73760u + 1.56012
0.452229u
23
+ 7.79322u
22
+ ··· + 19.7188u + 1.63255
a
4
=
1.65509u
23
+ 29.4006u
22
+ ··· + 284.170u + 27.8388
0.820536u
23
+ 14.3402u
22
+ ··· + 115.748u + 12.3781
a
3
=
2.38937u
23
+ 42.1061u
22
+ ··· + 383.557u + 38.2617
1.17675u
23
+ 20.7176u
22
+ ··· + 144.303u + 14.9358
a
7
=
0.812939u
23
13.6447u
22
+ ··· 40.9787u 2.36243
1.10529u
23
18.9019u
22
+ ··· 56.9798u 4.84305
a
6
=
0.822628u
23
+ 13.5628u
22
+ ··· + 65.4774u + 5.93289
2.10151u
23
+ 36.5939u
22
+ ··· + 173.676u + 16.6453
a
2
=
0.778150u
23
+ 13.1980u
22
+ ··· + 46.3607u + 3.84960
1.56119u
23
+ 26.8336u
22
+ ··· + 93.3811u + 7.91527
a
10
=
0.0582376u
23
0.896432u
22
+ ··· + 2.25306u + 1.07610
0.0386155u
23
+ 0.504620u
22
+ ··· 1.21417u 0.0981103
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
12998513265738
1521391151543
u
23
+
228690626935746
1521391151543
u
22
+ ··· +
1512678087445189
1521391151543
u +
140722368482773
1521391151543
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
24
+ 5u
23
+ ··· + 4u + 25
c
2
, c
6
u
24
5u
23
+ ··· 24u + 5
c
3
u
24
+ 32u
22
+ ··· + 3u + 1
c
4
, c
11
u
24
+ u
23
+ ··· + 4u + 1
c
7
u
24
27u
23
+ ··· 6144u + 1024
c
8
u
24
18u
23
+ ··· 63u + 5
c
9
, c
12
u
24
26u
22
+ ··· + 17u + 1
c
10
u
24
+ 12u
22
+ ··· + 19u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
24
+ 33y
23
+ ··· 7216y + 625
c
2
, c
6
y
24
+ 5y
23
+ ··· + 4y + 25
c
3
y
24
+ 64y
23
+ ··· + 7y + 1
c
4
, c
11
y
24
9y
23
+ ··· 16y + 1
c
7
y
24
15y
23
+ ··· + 29884416y
2
+ 1048576
c
8
y
24
+ 50y
22
+ ··· + 101y + 25
c
9
, c
12
y
24
52y
23
+ ··· 117y + 1
c
10
y
24
+ 24y
23
+ ··· + 4311y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.401173 + 1.000390I
a = 0.287799 1.279530I
b = 1.164570 0.801223I
4.97730 + 3.76182I 7.47515 2.42928I
u = 0.401173 1.000390I
a = 0.287799 + 1.279530I
b = 1.164570 + 0.801223I
4.97730 3.76182I 7.47515 + 2.42928I
u = 0.895129 + 0.707186I
a = 0.642012 0.323894I
b = 0.803737 + 0.164096I
3.40541 + 0.54338I 9.96762 + 0.I
u = 0.895129 0.707186I
a = 0.642012 + 0.323894I
b = 0.803737 0.164096I
3.40541 0.54338I 9.96762 + 0.I
u = 0.634153 + 0.969164I
a = 0.099094 + 1.257220I
b = 1.15561 + 0.89330I
3.19488 + 9.64059I 5.12102 7.65493I
u = 0.634153 0.969164I
a = 0.099094 1.257220I
b = 1.15561 0.89330I
3.19488 9.64059I 5.12102 + 7.65493I
u = 0.388319 + 0.539618I
a = 0.22109 + 1.74704I
b = 0.856878 + 0.797713I
1.96075 + 3.03649I 1.72656 2.94326I
u = 0.388319 0.539618I
a = 0.22109 1.74704I
b = 0.856878 0.797713I
1.96075 3.03649I 1.72656 + 2.94326I
u = 0.264551 + 0.575187I
a = 0.414815 + 0.746478I
b = 0.539104 + 0.041115I
0.61911 1.60676I 1.07516 + 5.36024I
u = 0.264551 0.575187I
a = 0.414815 0.746478I
b = 0.539104 0.041115I
0.61911 + 1.60676I 1.07516 5.36024I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.666916 + 1.239860I
a = 0.329991 + 0.358310I
b = 0.664331 0.170181I
3.42032 4.04799I 0. + 7.82789I
u = 0.666916 1.239860I
a = 0.329991 0.358310I
b = 0.664331 + 0.170181I
3.42032 + 4.04799I 0. 7.82789I
u = 0.053583 + 0.452097I
a = 0.55903 2.05204I
b = 0.897767 0.362690I
1.51247 + 0.42081I 8.19848 1.31600I
u = 0.053583 0.452097I
a = 0.55903 + 2.05204I
b = 0.897767 + 0.362690I
1.51247 0.42081I 8.19848 + 1.31600I
u = 0.359542 + 0.101893I
a = 0.10927 + 2.29685I
b = 0.194744 + 0.836947I
0.17995 2.31205I 1.12278 + 4.62522I
u = 0.359542 0.101893I
a = 0.10927 2.29685I
b = 0.194744 0.836947I
0.17995 + 2.31205I 1.12278 4.62522I
u = 0.93950 + 1.42997I
a = 0.065784 0.924691I
b = 1.26048 0.96281I
15.4724 + 7.4151I 0
u = 0.93950 1.42997I
a = 0.065784 + 0.924691I
b = 1.26048 + 0.96281I
15.4724 7.4151I 0
u = 1.02696 + 1.40305I
a = 0.027606 + 0.911387I
b = 1.25037 + 0.97469I
15.0388 + 14.5096I 0
u = 1.02696 1.40305I
a = 0.027606 0.911387I
b = 1.25037 0.97469I
15.0388 14.5096I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.96069 + 1.10463I
a = 0.366729 + 0.020741I
b = 0.696132 + 0.445764I
12.99680 + 2.23230I 0
u = 1.96069 1.10463I
a = 0.366729 0.020741I
b = 0.696132 0.445764I
12.99680 2.23230I 0
u = 1.93859 + 1.28607I
a = 0.338018 + 0.004948I
b = 0.661642 0.425123I
13.11360 4.55126I 0
u = 1.93859 1.28607I
a = 0.338018 0.004948I
b = 0.661642 + 0.425123I
13.11360 + 4.55126I 0
7
II. I
u
2
= h−u
13
+ 3u
12
+ · · · + b 8, 8u
13
69u
12
+ · · · + 13a 164, u
14
7u
13
+ · · · 66u + 13i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
5
=
0.615385u
13
+ 5.30769u
12
+ ··· 54.0769u + 12.6154
u
13
3u
12
+ ··· 28u + 8
a
9
=
1
u
2
a
12
=
0.923077u
13
+ 5.46154u
12
+ ··· 40.6154u + 6.92308
u
13
+ 6u
12
+ ··· 53u + 12
a
1
=
0.923077u
13
+ 5.46154u
12
+ ··· 39.6154u + 5.92308
u
13
+ 6u
12
+ ··· 53u + 12
a
4
=
1.61538u
13
+ 8.30769u
12
+ ··· 26.0769u + 4.61538
u
13
3u
12
+ ··· 28u + 8
a
3
=
3.38462u
13
18.6923u
12
+ ··· + 122.923u 26.3846
11u
13
64u
12
+ ··· + 435u 96
a
7
=
1.92308u
13
12.4615u
12
+ ··· + 134.615u 31.9231
u
12
+ 5u
11
+ ··· + 40u 12
a
6
=
4.38462u
13
+ 20.6923u
12
+ ··· 6.92308u 5.61538
19u
13
+ 111u
12
+ ··· 752u + 161
a
2
=
0.923077u
13
6.46154u
12
+ ··· + 80.6154u 20.9231
2u
12
+ 10u
11
+ ··· + 82u 25
a
10
=
0.0769231u
13
0.538462u
12
+ ··· + 13.3846u 4.07692
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14u
13
+ 87u
12
228u
11
+ 253u
10
+ 151u
9
946u
8
+ 1451u
7
907u
6
571u
5
+ 1908u
4
2143u
3
+ 1430u
2
580u + 122
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
14
4u
13
+ ··· 11u + 1
c
2
u
14
2u
13
+ ··· u + 1
c
3
u
14
u
13
+ ··· 4u + 1
c
4
, c
11
u
14
+ u
12
+ ··· + u + 1
c
6
u
14
+ 2u
13
+ ··· + u + 1
c
7
u
14
5u
13
+ ··· + 2u + 1
c
8
u
14
7u
13
+ ··· 66u + 13
c
9
u
14
+ 7u
13
+ ··· + 2u + 1
c
10
u
14
u
13
+ ··· + u
2
+ 1
c
12
u
14
7u
13
+ ··· 2u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
14
+ 16y
13
+ ··· 29y + 1
c
2
, c
6
y
14
+ 4y
13
+ ··· + 11y + 1
c
3
y
14
+ 7y
13
+ ··· 2y + 1
c
4
, c
11
y
14
+ 2y
13
+ ··· + 7y + 1
c
7
y
14
15y
13
+ ··· 6y + 1
c
8
y
14
5y
13
+ ··· + 168y + 169
c
9
, c
12
y
14
5y
13
+ ··· + 14y + 1
c
10
y
14
+ 7y
13
+ ··· + 2y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.849111 + 0.715901I
a = 0.019947 + 1.052460I
b = 0.736521 + 0.907937I
3.07370 3.80425I 5.63446 + 5.71514I
u = 0.849111 0.715901I
a = 0.019947 1.052460I
b = 0.736521 0.907937I
3.07370 + 3.80425I 5.63446 5.71514I
u = 0.313761 + 1.089880I
a = 0.549742 0.549016I
b = 0.425872 0.771411I
1.77746 4.05505I 3.41727 + 6.24011I
u = 0.313761 1.089880I
a = 0.549742 + 0.549016I
b = 0.425872 + 0.771411I
1.77746 + 4.05505I 3.41727 6.24011I
u = 0.311775 + 0.708424I
a = 0.892105 + 0.945635I
b = 0.391774 + 0.926814I
0.73793 + 1.30082I 2.62476 + 1.43148I
u = 0.311775 0.708424I
a = 0.892105 0.945635I
b = 0.391774 0.926814I
0.73793 1.30082I 2.62476 1.43148I
u = 1.119030 + 0.593759I
a = 0.391744 + 0.935712I
b = 0.993957 + 0.814483I
1.54894 8.36056I 3.10198 + 6.93573I
u = 1.119030 0.593759I
a = 0.391744 0.935712I
b = 0.993957 0.814483I
1.54894 + 8.36056I 3.10198 6.93573I
u = 1.189000 + 0.649257I
a = 0.371944 0.816978I
b = 0.972669 0.729899I
2.10101 2.72257I 4.91037 + 2.51501I
u = 1.189000 0.649257I
a = 0.371944 + 0.816978I
b = 0.972669 + 0.729899I
2.10101 + 2.72257I 4.91037 2.51501I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.381310 + 0.146372I
a = 0.063316 + 0.461767I
b = 0.019869 0.647110I
12.91060 3.47104I 5.96925 + 1.99685I
u = 1.381310 0.146372I
a = 0.063316 0.461767I
b = 0.019869 + 0.647110I
12.91060 + 3.47104I 5.96925 1.99685I
u = 1.09864 + 1.09539I
a = 0.028499 0.613967I
b = 0.703842 0.643310I
1.19786 3.68086I 0.88917 + 6.15653I
u = 1.09864 1.09539I
a = 0.028499 + 0.613967I
b = 0.703842 + 0.643310I
1.19786 + 3.68086I 0.88917 6.15653I
12
III. I
u
3
=
hu
11
3u
10
+· · ·+2b 4, 4u
11
a+u
11
+· · ·+4a +24, u
12
3u
11
+· · ·6u +4i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
5
=
a
1
2
u
11
+
3
2
u
10
+ ···
5
2
u + 2
a
9
=
1
u
2
a
12
=
1
2
u
11
a
1
4
u
11
+ ··· 2a +
1
2
1
a
1
=
3
2
u
11
a
1
4
u
11
+ ··· 2a +
3
2
u
11
a + 3u
10
a + ··· 4au + 1
a
4
=
1
2
u
11
3
2
u
10
+ ··· + a 2
1
2
u
11
+
3
2
u
10
+ ···
5
2
u + 2
a
3
=
u
11
3u
10
+ ··· + a + 2u
1
2
u
11
+
3
2
u
10
+ ···
9
2
u + 2
a
7
=
1
2
u
11
a
1
4
u
11
+ ··· 2a +
3
2
1
a
6
=
1
2
u
11
a +
1
2
u
11
+ ··· + 2a
1
2
au
a
2
=
u
10
a
1
4
u
11
+ ··· 4a +
3
2
1
2
u
11
+
3
2
u
10
+ ··· + 2a + 2
a
10
=
3
2
u
11
a
1
4
u
11
+ ··· 2a +
1
2
u
11
a + 3u
10
a + ··· + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1
2
u
11
+
5
2
u
10
5
2
u
9
+ 4u
8
2u
7
+
19
2
u
6
7
2
u
5
+ 12u
4
3
2
u
3
+
29
2
u
2
5
2
u + 16
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
12
+ 2u
11
+ ··· + 6u + 1)
2
c
2
, c
6
(u
12
+ 2u
11
+ ··· + 2u + 1)
2
c
3
u
24
+ 20u
22
+ ··· 1035u + 22
c
4
, c
11
u
24
+ 2u
23
+ ··· 7u + 16
c
7
(u + 1)
24
c
8
(u
12
+ 3u
11
+ ··· + 6u + 4)
2
c
9
, c
12
u
24
5u
23
+ ··· + 8613u + 4448
c
10
u
24
+ 2u
23
+ ··· + 1443u + 5011
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
12
+ 18y
11
+ ··· + 6y + 1)
2
c
2
, c
6
(y
12
+ 2y
11
+ ··· + 6y + 1)
2
c
3
y
24
+ 40y
23
+ ··· 489721y + 484
c
4
, c
11
y
24
+ 38y
22
+ ··· 2737y + 256
c
7
(y 1)
24
c
8
(y
12
+ 5y
11
+ ··· + 84y + 16)
2
c
9
, c
12
y
24
37y
23
+ ··· + 4661479y + 19784704
c
10
y
24
+ 20y
23
+ ··· + 194809963y + 25110121
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.595557 + 0.863954I
a = 0.141148 0.929948I
b = 1.07056 1.49446I
13.6814 + 5.8161I 7.09681 5.45294I
u = 0.595557 + 0.863954I
a = 1.75162 + 0.03168I
b = 0.887493 0.431892I
13.6814 + 5.8161I 7.09681 5.45294I
u = 0.595557 0.863954I
a = 0.141148 + 0.929948I
b = 1.07056 + 1.49446I
13.6814 5.8161I 7.09681 + 5.45294I
u = 0.595557 0.863954I
a = 1.75162 0.03168I
b = 0.887493 + 0.431892I
13.6814 5.8161I 7.09681 + 5.45294I
u = 0.521857 + 0.963930I
a = 0.105818 + 0.886399I
b = 1.08284 + 1.48890I
14.05920 1.29677I 8.02075 0.64369I
u = 0.521857 + 0.963930I
a = 1.66482 0.22205I
b = 0.909648 + 0.360572I
14.05920 1.29677I 8.02075 0.64369I
u = 0.521857 0.963930I
a = 0.105818 0.886399I
b = 1.08284 1.48890I
14.05920 + 1.29677I 8.02075 + 0.64369I
u = 0.521857 0.963930I
a = 1.66482 + 0.22205I
b = 0.909648 0.360572I
14.05920 + 1.29677I 8.02075 + 0.64369I
u = 0.380152 + 1.069420I
a = 0.102983 + 0.676971I
b = 1.04377 + 1.20002I
3.57471 4.01356I 9.35409 + 5.50726I
u = 0.380152 + 1.069420I
a = 0.688213 1.220660I
b = 0.763114 0.147220I
3.57471 4.01356I 9.35409 + 5.50726I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.380152 1.069420I
a = 0.102983 0.676971I
b = 1.04377 1.20002I
3.57471 + 4.01356I 9.35409 5.50726I
u = 0.380152 1.069420I
a = 0.688213 + 1.220660I
b = 0.763114 + 0.147220I
3.57471 + 4.01356I 9.35409 5.50726I
u = 0.246665 + 0.748766I
a = 0.218149 0.727778I
b = 1.29103 1.21568I
2.20338 + 1.32744I 9.73221 + 1.32386I
u = 0.246665 + 0.748766I
a = 0.95223 + 2.03791I
b = 0.598745 + 0.016175I
2.20338 + 1.32744I 9.73221 + 1.32386I
u = 0.246665 0.748766I
a = 0.218149 + 0.727778I
b = 1.29103 + 1.21568I
2.20338 1.32744I 9.73221 1.32386I
u = 0.246665 0.748766I
a = 0.95223 2.03791I
b = 0.598745 0.016175I
2.20338 1.32744I 9.73221 1.32386I
u = 1.005850 + 0.842159I
a = 0.170941 + 0.863353I
b = 0.453719 + 0.571135I
1.51202 2.72726I 2.43929 0.47681I
u = 1.005850 + 0.842159I
a = 0.014301 0.555838I
b = 0.899022 0.724448I
1.51202 2.72726I 2.43929 0.47681I
u = 1.005850 0.842159I
a = 0.170941 0.863353I
b = 0.453719 0.571135I
1.51202 + 2.72726I 2.43929 + 0.47681I
u = 1.005850 0.842159I
a = 0.014301 + 0.555838I
b = 0.899022 + 0.724448I
1.51202 + 2.72726I 2.43929 + 0.47681I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.98474 + 1.10667I
a = 0.168174 0.749804I
b = 0.797372 0.556358I
0.75285 4.59014I 2.73542 + 11.41867I
u = 0.98474 + 1.10667I
a = 0.077239 + 0.651782I
b = 0.664181 + 0.924478I
0.75285 4.59014I 2.73542 + 11.41867I
u = 0.98474 1.10667I
a = 0.168174 + 0.749804I
b = 0.797372 + 0.556358I
0.75285 + 4.59014I 2.73542 11.41867I
u = 0.98474 1.10667I
a = 0.077239 0.651782I
b = 0.664181 0.924478I
0.75285 + 4.59014I 2.73542 11.41867I
18
IV. I
v
1
= ha, v
2
+ b 2v + 2, v
4
3v
3
+ 5v
2
3v + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
v
0
a
5
=
0
v
2
+ 2v 2
a
9
=
1
0
a
12
=
v
1
a
1
=
v 1
1
a
4
=
v
2
2v + 2
v
2
+ 2v 2
a
3
=
0
v
2
+ 2v 2
a
7
=
v + 1
1
a
6
=
v
3
+ 2v
2
3v + 1
v
3
+ 2v
2
2v
a
2
=
v 1
v
3
3v
2
+ 5v 3
a
10
=
v + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7v
3
+ 21v
2
28v + 14
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
(u
2
u + 1)
2
c
2
(u
2
+ u + 1)
2
c
3
, c
4
, c
10
c
11
u
4
u
3
u
2
+ u + 1
c
7
, c
9
(u + 1)
4
c
8
u
4
c
12
(u 1)
4
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y
2
+ y + 1)
2
c
3
, c
4
, c
10
c
11
y
4
3y
3
+ 5y
2
3y + 1
c
7
, c
9
, c
12
(y 1)
4
c
8
y
4
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.378256 + 0.440597I
a = 0
b = 1.192440 + 0.547877I
1.64493 + 2.02988I 3.50000 6.06218I
v = 0.378256 0.440597I
a = 0
b = 1.192440 0.547877I
1.64493 2.02988I 3.50000 + 6.06218I
v = 1.12174 + 1.30662I
a = 0
b = 0.692440 0.318148I
1.64493 2.02988I 3.50000 + 6.06218I
v = 1.12174 1.30662I
a = 0
b = 0.692440 + 0.318148I
1.64493 + 2.02988I 3.50000 6.06218I
22
V. I
v
2
= ha, b + 1, v 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
1
0
a
5
=
0
1
a
9
=
1
0
a
12
=
1
1
a
1
=
0
1
a
4
=
1
1
a
3
=
0
1
a
7
=
0
1
a
6
=
0
1
a
2
=
0
1
a
10
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
8
u
c
3
, c
4
, c
7
c
9
, c
10
, c
11
c
12
u 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
8
y
c
3
, c
4
, c
7
c
9
, c
10
, c
11
c
12
y 1
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
26
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u(u
2
u + 1)
2
(u
12
+ 2u
11
+ ··· + 6u + 1)
2
· (u
14
4u
13
+ ··· 11u + 1)(u
24
+ 5u
23
+ ··· + 4u + 25)
c
2
u(u
2
+ u + 1)
2
(u
12
+ 2u
11
+ ··· + 2u + 1)
2
(u
14
2u
13
+ ··· u + 1)
· (u
24
5u
23
+ ··· 24u + 5)
c
3
(u 1)(u
4
u
3
u
2
+ u + 1)(u
14
u
13
+ ··· 4u + 1)
· (u
24
+ 20u
22
+ ··· 1035u + 22)(u
24
+ 32u
22
+ ··· + 3u + 1)
c
4
, c
11
(u 1)(u
4
u
3
u
2
+ u + 1)(u
14
+ u
12
+ ··· + u + 1)
· (u
24
+ u
23
+ ··· + 4u + 1)(u
24
+ 2u
23
+ ··· 7u + 16)
c
6
u(u
2
u + 1)
2
(u
12
+ 2u
11
+ ··· + 2u + 1)
2
(u
14
+ 2u
13
+ ··· + u + 1)
· (u
24
5u
23
+ ··· 24u + 5)
c
7
(u 1)(u + 1)
28
(u
14
5u
13
+ ··· + 2u + 1)
· (u
24
27u
23
+ ··· 6144u + 1024)
c
8
u
5
(u
12
+ 3u
11
+ ··· + 6u + 4)
2
(u
14
7u
13
+ ··· 66u + 13)
· (u
24
18u
23
+ ··· 63u + 5)
c
9
(u 1)(u + 1)
4
(u
14
+ 7u
13
+ ··· + 2u + 1)(u
24
26u
22
+ ··· + 17u + 1)
· (u
24
5u
23
+ ··· + 8613u + 4448)
c
10
(u 1)(u
4
u
3
u
2
+ u + 1)(u
14
u
13
+ ··· + u
2
+ 1)
· (u
24
+ 12u
22
+ ··· + 19u + 16)(u
24
+ 2u
23
+ ··· + 1443u + 5011)
c
12
((u 1)
5
)(u
14
7u
13
+ ··· 2u + 1)(u
24
26u
22
+ ··· + 17u + 1)
· (u
24
5u
23
+ ··· + 8613u + 4448)
27
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y(y
2
+ y + 1)
2
(y
12
+ 18y
11
+ ··· + 6y + 1)
2
· (y
14
+ 16y
13
+ ··· 29y + 1)(y
24
+ 33y
23
+ ··· 7216y + 625)
c
2
, c
6
y(y
2
+ y + 1)
2
(y
12
+ 2y
11
+ ··· + 6y + 1)
2
· (y
14
+ 4y
13
+ ··· + 11y + 1)(y
24
+ 5y
23
+ ··· + 4y + 25)
c
3
(y 1)(y
4
3y
3
+ ··· 3y + 1)(y
14
+ 7y
13
+ ··· 2y + 1)
· (y
24
+ 40y
23
+ ··· 489721y + 484)(y
24
+ 64y
23
+ ··· + 7y + 1)
c
4
, c
11
(y 1)(y
4
3y
3
+ ··· 3y + 1)(y
14
+ 2y
13
+ ··· + 7y + 1)
· (y
24
+ 38y
22
+ ··· 2737y + 256)(y
24
9y
23
+ ··· 16y + 1)
c
7
((y 1)
29
)(y
14
15y
13
+ ··· 6y + 1)
· (y
24
15y
23
+ ··· + 29884416y
2
+ 1048576)
c
8
y
5
(y
12
+ 5y
11
+ ··· + 84y + 16)
2
(y
14
5y
13
+ ··· + 168y + 169)
· (y
24
+ 50y
22
+ ··· + 101y + 25)
c
9
, c
12
((y 1)
5
)(y
14
5y
13
+ ··· + 14y + 1)(y
24
52y
23
+ ··· 117y + 1)
· (y
24
37y
23
+ ··· + 4661479y + 19784704)
c
10
(y 1)(y
4
3y
3
+ ··· 3y + 1)(y
14
+ 7y
13
+ ··· + 2y + 1)
· (y
24
+ 20y
23
+ ··· + 194809963y + 25110121)
· (y
24
+ 24y
23
+ ··· + 4311y + 256)
28