12n
0463
(K12n
0463
)
A knot diagram
1
Linearized knot diagam
3 6 9 11 10 2 5 11 7 1 7 5
Solving Sequence
3,6
2 7
1,10
11 5 4 9 8 12
c
2
c
6
c
1
c
10
c
5
c
4
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.95032 × 10
31
u
56
+ 1.71447 × 10
31
u
55
+ ··· + 4.19522 × 10
30
b + 2.83748 × 10
30
,
6.77996 × 10
28
u
56
+ 1.77525 × 10
28
u
55
+ ··· + 4.19522 × 10
30
a + 2.18312 × 10
31
, u
57
+ u
56
+ ··· 4u + 1i
I
u
2
= h−22u
18
181u
17
+ ··· + 163b 517, 236u
18
+ 207u
17
+ ··· + 489a 656, u
19
+ 4u
17
+ ··· + u + 3i
* 2 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.95 × 10
31
u
56
+ 1.71 × 10
31
u
55
+ · · · + 4.20 × 10
30
b + 2.84 × 10
30
, 6.78 ×
10
28
u
56
+1.78×10
28
u
55
+· · ·+4.20×10
30
a+2.18×10
31
, u
57
+u
56
+· · ·4u+1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
0.0161612u
56
0.00423161u
55
+ ··· + 9.21492u 5.20384
4.64891u
56
4.08673u
55
+ ··· + 8.22561u 0.676360
a
11
=
1.35701u
56
1.90195u
55
+ ··· + 15.5812u 3.61076
0.690005u
56
0.579020u
55
+ ··· 0.467421u + 2.14333
a
5
=
0.0705764u
56
+ 1.77602u
55
+ ··· + 7.98057u 8.40092
1.38197u
56
3.25826u
55
+ ··· + 15.1658u 1.78365
a
4
=
3.43593u
56
4.84658u
55
+ ··· + 27.2515u 12.4708
0.831823u
56
+ 1.66029u
55
+ ··· 4.45631u + 2.03328
a
9
=
2.85272u
56
0.882312u
55
+ ··· + 16.7462u 5.66879
1.66635u
56
1.20242u
55
+ ··· 2.09986u + 2.60564
a
8
=
2.83296u
56
0.179396u
55
+ ··· 13.2309u + 6.27694
1.18756u
56
1.89146u
55
+ ··· + 4.35427u 0.0534336
a
12
=
0.245429u
56
0.791586u
55
+ ··· + 10.2920u 3.11445
2.79987u
56
2.53249u
55
+ ··· + 6.69697u 0.0731651
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.53377u
56
2.13196u
55
+ ··· + 30.2938u 21.3146
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
57
+ 25u
56
+ ··· + 14u 1
c
2
, c
6
u
57
u
56
+ ··· 4u 1
c
3
, c
7
u
57
+ u
56
+ ··· + 20u 1
c
4
u
57
+ 57u
55
+ ··· 5u 1
c
5
u
57
+ 2u
56
+ ··· 20u 8
c
8
u
57
+ 12u
56
+ ··· + 6371062u 656059
c
9
u
57
16u
56
+ ··· + 4109u 103
c
10
u
57
+ 17u
56
+ ··· 1408u 121
c
11
u
57
2u
56
+ ··· + 2391u 4381
c
12
u
57
5u
56
+ ··· 406462u 931379
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
57
+ 17y
56
+ ··· + 290y 1
c
2
, c
6
y
57
+ 25y
56
+ ··· + 14y 1
c
3
, c
7
y
57
+ 81y
56
+ ··· 90y 1
c
4
y
57
+ 114y
56
+ ··· 39y 1
c
5
y
57
6y
56
+ ··· + 3024y 64
c
8
y
57
102y
56
+ ··· + 13754392721800y 430413411481
c
9
y
57
40y
56
+ ··· + 8276171y 10609
c
10
y
57
+ 5y
56
+ ··· 20328y 14641
c
11
y
57
106y
56
+ ··· 199156203y 19193161
c
12
y
57
+ 47y
56
+ ··· 15214664971620y 867466841641
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.349956 + 0.946672I
a = 0.303689 0.199224I
b = 2.29980 2.68295I
12.39530 1.32883I 10.52705 + 0.14046I
u = 0.349956 0.946672I
a = 0.303689 + 0.199224I
b = 2.29980 + 2.68295I
12.39530 + 1.32883I 10.52705 0.14046I
u = 0.924015 + 0.413182I
a = 1.43213 0.45322I
b = 0.39289 1.40886I
10.15880 + 9.30058I 0.80484 3.88564I
u = 0.924015 0.413182I
a = 1.43213 + 0.45322I
b = 0.39289 + 1.40886I
10.15880 9.30058I 0.80484 + 3.88564I
u = 0.966093 + 0.416915I
a = 0.349131 + 0.038307I
b = 0.007320 + 0.449427I
1.114500 + 0.475775I 1.77277 7.35288I
u = 0.966093 0.416915I
a = 0.349131 0.038307I
b = 0.007320 0.449427I
1.114500 0.475775I 1.77277 + 7.35288I
u = 0.321525 + 1.004170I
a = 1.47698 1.06277I
b = 1.04811 2.34391I
13.15110 + 0.96971I 6.75666 1.21694I
u = 0.321525 1.004170I
a = 1.47698 + 1.06277I
b = 1.04811 + 2.34391I
13.15110 0.96971I 6.75666 + 1.21694I
u = 0.276056 + 0.903211I
a = 0.236831 1.280450I
b = 0.587986 0.401848I
1.86758 2.05981I 0.46331 + 1.96537I
u = 0.276056 0.903211I
a = 0.236831 + 1.280450I
b = 0.587986 + 0.401848I
1.86758 + 2.05981I 0.46331 1.96537I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.846735 + 0.415561I
a = 1.293880 + 0.511117I
b = 0.365878 + 1.061840I
0.02058 4.34656I 0.26821 + 3.69834I
u = 0.846735 0.415561I
a = 1.293880 0.511117I
b = 0.365878 1.061840I
0.02058 + 4.34656I 0.26821 3.69834I
u = 0.397636 + 0.979748I
a = 0.015757 + 0.428561I
b = 1.39141 + 1.12780I
3.43752 + 1.28189I 5.91191 1.08703I
u = 0.397636 0.979748I
a = 0.015757 0.428561I
b = 1.39141 1.12780I
3.43752 1.28189I 5.91191 + 1.08703I
u = 0.408296 + 0.978654I
a = 1.27837 + 0.98027I
b = 0.910664 0.028975I
2.61713 0.73681I 3.54054 + 3.15346I
u = 0.408296 0.978654I
a = 1.27837 0.98027I
b = 0.910664 + 0.028975I
2.61713 + 0.73681I 3.54054 3.15346I
u = 0.675685 + 0.597241I
a = 0.876923 0.578864I
b = 0.097247 0.847074I
1.50545 1.28490I 3.77323 + 4.50863I
u = 0.675685 0.597241I
a = 0.876923 + 0.578864I
b = 0.097247 + 0.847074I
1.50545 + 1.28490I 3.77323 4.50863I
u = 0.459215 + 1.005020I
a = 0.284902 + 0.841083I
b = 0.106017 + 1.132020I
3.04982 + 4.72917I 4.15324 9.32450I
u = 0.459215 1.005020I
a = 0.284902 0.841083I
b = 0.106017 1.132020I
3.04982 4.72917I 4.15324 + 9.32450I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.711622 + 0.542227I
a = 0.978562 0.301016I
b = 0.115817 1.372610I
2.68108 2.12211I 6.33969 + 1.94365I
u = 0.711622 0.542227I
a = 0.978562 + 0.301016I
b = 0.115817 + 1.372610I
2.68108 + 2.12211I 6.33969 1.94365I
u = 0.501529 + 1.005740I
a = 0.67417 + 1.37103I
b = 1.67778 + 2.16523I
1.95552 5.12176I 0. + 6.61060I
u = 0.501529 1.005740I
a = 0.67417 1.37103I
b = 1.67778 2.16523I
1.95552 + 5.12176I 0. 6.61060I
u = 0.199034 + 0.817620I
a = 0.803863 0.976801I
b = 0.276848 0.608793I
1.70481 1.56112I 0.16745 + 5.41560I
u = 0.199034 0.817620I
a = 0.803863 + 0.976801I
b = 0.276848 + 0.608793I
1.70481 + 1.56112I 0.16745 5.41560I
u = 0.538375 + 1.030800I
a = 0.116672 0.787747I
b = 0.28486 2.44669I
10.96040 4.57401I 0
u = 0.538375 1.030800I
a = 0.116672 + 0.787747I
b = 0.28486 + 2.44669I
10.96040 + 4.57401I 0
u = 0.584272 + 1.019390I
a = 0.400981 0.948656I
b = 0.83486 1.37560I
0.20940 3.59994I 0
u = 0.584272 1.019390I
a = 0.400981 + 0.948656I
b = 0.83486 + 1.37560I
0.20940 + 3.59994I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.527359 + 1.065210I
a = 1.64010 0.51000I
b = 0.93686 + 1.21045I
11.70070 + 5.59902I 0
u = 0.527359 1.065210I
a = 1.64010 + 0.51000I
b = 0.93686 1.21045I
11.70070 5.59902I 0
u = 0.996785 + 0.661596I
a = 0.195695 + 0.706856I
b = 0.836567 + 0.341424I
8.63281 + 4.27743I 0
u = 0.996785 0.661596I
a = 0.195695 0.706856I
b = 0.836567 0.341424I
8.63281 4.27743I 0
u = 0.605290 + 1.038470I
a = 0.327621 0.864561I
b = 1.42976 1.72470I
1.19878 + 7.18626I 0
u = 0.605290 1.038470I
a = 0.327621 + 0.864561I
b = 1.42976 + 1.72470I
1.19878 7.18626I 0
u = 0.058017 + 1.216930I
a = 0.305650 + 0.796434I
b = 0.521846 + 0.385158I
5.73579 1.82350I 0
u = 0.058017 1.216930I
a = 0.305650 0.796434I
b = 0.521846 0.385158I
5.73579 + 1.82350I 0
u = 0.570883 + 0.483592I
a = 1.42182 + 0.20086I
b = 1.056060 + 0.012511I
9.37580 + 0.10389I 0.28028 1.50449I
u = 0.570883 0.483592I
a = 1.42182 0.20086I
b = 1.056060 0.012511I
9.37580 0.10389I 0.28028 + 1.50449I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.421818 + 0.600652I
a = 1.77014 + 0.12826I
b = 0.01207 + 1.76563I
0.649695 + 1.123590I 1.75264 1.62857I
u = 0.421818 0.600652I
a = 1.77014 0.12826I
b = 0.01207 1.76563I
0.649695 1.123590I 1.75264 + 1.62857I
u = 0.625228 + 1.120040I
a = 0.285068 + 1.206890I
b = 1.23895 + 1.72070I
2.08741 + 9.80069I 0
u = 0.625228 1.120040I
a = 0.285068 1.206890I
b = 1.23895 1.72070I
2.08741 9.80069I 0
u = 0.075556 + 1.291700I
a = 0.595125 0.881595I
b = 0.251519 0.446971I
16.3180 + 6.3103I 0
u = 0.075556 1.291700I
a = 0.595125 + 0.881595I
b = 0.251519 + 0.446971I
16.3180 6.3103I 0
u = 0.595217 + 0.376896I
a = 0.49225 + 2.24517I
b = 0.95401 + 1.43916I
9.74503 1.13283I 0.125687 + 0.944361I
u = 0.595217 0.376896I
a = 0.49225 2.24517I
b = 0.95401 1.43916I
9.74503 + 1.13283I 0.125687 0.944361I
u = 0.652334 + 1.131340I
a = 0.054821 + 0.544694I
b = 0.97755 + 1.04049I
1.05681 6.25223I 0
u = 0.652334 1.131340I
a = 0.054821 0.544694I
b = 0.97755 1.04049I
1.05681 + 6.25223I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.648644 + 1.154300I
a = 0.242666 1.233560I
b = 1.57143 2.00829I
12.4207 15.0539I 0
u = 0.648644 1.154300I
a = 0.242666 + 1.233560I
b = 1.57143 + 2.00829I
12.4207 + 15.0539I 0
u = 0.671768
a = 0.366130
b = 0.477596
1.20012 11.5930
u = 0.80509 + 1.19177I
a = 0.354067 0.302190I
b = 0.803093 + 0.109041I
10.20330 + 2.47505I 0
u = 0.80509 1.19177I
a = 0.354067 + 0.302190I
b = 0.803093 0.109041I
10.20330 2.47505I 0
u = 0.280643 + 0.019804I
a = 2.46507 + 1.48163I
b = 0.125719 0.515240I
1.21526 1.45435I 0.50304 + 4.00620I
u = 0.280643 0.019804I
a = 2.46507 1.48163I
b = 0.125719 + 0.515240I
1.21526 + 1.45435I 0.50304 4.00620I
10
II. I
u
2
= h−22u
18
181u
17
+ · · · + 163b 517, 236u
18
+ 207u
17
+ · · · +
489a 656, u
19
+ 4u
17
+ · · · + u + 3i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
10
=
0.482618u
18
0.423313u
17
+ ··· + 2.27198u + 1.34151
0.134969u
18
+ 1.11043u
17
+ ··· + 2.71166u + 3.17178
a
11
=
1.01022u
18
0.809816u
17
+ ··· + 2.78119u + 0.740286
u
17
+ 4u
15
+ ··· + u + 4
a
5
=
0.750511u
18
0.159509u
17
+ ··· 0.139059u 2.13701
1.43558u
18
0.0981595u
17
+ ··· + 4.47853u 1.26380
a
4
=
0.523517u
18
+ 0.337423u
17
+ ··· + 2.39673u 1.69734
0.533742u
18
0.527607u
17
+ ··· 1.17791u 0.0429448
a
9
=
1.43967u
18
0.822086u
17
+ ··· + 2.59100u 0.167689
0.325153u
18
+ 0.552147u
17
+ ··· + 0.558282u + 2.85890
a
8
=
0.482618u
18
0.423313u
17
+ ··· + 2.27198u 2.65849
0.423313u
18
0.926380u
17
+ ··· 1.85890u 2.55215
a
12
=
0.482618u
18
0.423313u
17
+ ··· + 2.27198u + 2.34151
0.0613497u
18
+ 1.14110u
17
+ ··· + 1.68712u + 4.44172
(ii) Obstruction class = 1
(iii) Cusp Shapes =
52
163
u
18
87
163
u
17
+ ···
941
163
u
1059
163
11
(iv) u-Polynomials at the component
12
Crossings u-Polynomials at each crossing
c
1
u
19
8u
18
+ ··· 47u + 9
c
2
u
19
+ 4u
17
+ ··· + u + 3
c
3
u
19
+ 10u
17
+ ··· + 3u + 1
c
4
u
19
+ u
18
+ ··· + 2u 1
c
5
u
19
+ u
18
+ ··· + 2u 1
c
6
u
19
+ 4u
17
+ ··· + u 3
c
7
u
19
+ 10u
17
+ ··· + 3u 1
c
8
u
19
15u
18
+ ··· + 17u 3
c
9
u
19
+ 3u
18
+ ··· u
2
+ 1
c
10
u
19
+ 4u
18
+ ··· + 5u + 1
c
11
u
19
u
18
+ ··· + 6u + 1
c
12
u
19
+ 2u
18
+ ··· u + 1
13
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 8y
18
+ ··· 131y 81
c
2
, c
6
y
19
+ 8y
18
+ ··· 47y 9
c
3
, c
7
y
19
+ 20y
18
+ ··· 7y 1
c
4
y
19
+ 13y
18
+ ··· + 12y 1
c
5
y
19
+ y
18
+ ··· 6y 1
c
8
y
19
19y
18
+ ··· 101y 9
c
9
y
19
21y
18
+ ··· + 2y 1
c
10
y
19
8y
18
+ ··· + 7y 1
c
11
y
19
19y
18
+ ··· 48y 1
c
12
y
19
+ 6y
18
+ ··· y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.809380 + 0.609336I
a = 0.642590 + 0.567390I
b = 0.033190 + 1.100160I
1.93114 + 0.05703I 5.27608 0.61329I
u = 0.809380 0.609336I
a = 0.642590 0.567390I
b = 0.033190 1.100160I
1.93114 0.05703I 5.27608 + 0.61329I
u = 0.380702 + 0.892229I
a = 0.864989 + 0.488196I
b = 1.45142 + 3.06408I
11.73130 + 1.58594I 1.69710 4.85525I
u = 0.380702 0.892229I
a = 0.864989 0.488196I
b = 1.45142 3.06408I
11.73130 1.58594I 1.69710 + 4.85525I
u = 0.950794
a = 0.534200
b = 0.417548
0.736407 10.1920
u = 0.106744 + 1.047650I
a = 0.605523 0.806007I
b = 0.379570 0.884630I
3.40808 2.06211I 4.23882 + 3.25949I
u = 0.106744 1.047650I
a = 0.605523 + 0.806007I
b = 0.379570 + 0.884630I
3.40808 + 2.06211I 4.23882 3.25949I
u = 0.792456 + 0.478311I
a = 1.237570 0.352759I
b = 0.061164 1.114880I
1.79413 3.68410I 3.77498 + 3.60536I
u = 0.792456 0.478311I
a = 1.237570 + 0.352759I
b = 0.061164 + 1.114880I
1.79413 + 3.68410I 3.77498 3.60536I
u = 0.312010 + 0.855320I
a = 1.26370 + 0.74522I
b = 0.083954 0.552115I
1.95432 + 0.51994I 3.03581 + 0.54030I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.312010 0.855320I
a = 1.26370 0.74522I
b = 0.083954 + 0.552115I
1.95432 0.51994I 3.03581 0.54030I
u = 0.402259 + 1.014470I
a = 0.054502 1.190310I
b = 0.90125 1.24715I
2.70781 3.32351I 4.18487 + 4.02916I
u = 0.402259 1.014470I
a = 0.054502 + 1.190310I
b = 0.90125 + 1.24715I
2.70781 + 3.32351I 4.18487 4.02916I
u = 0.635239 + 1.022560I
a = 0.614017 + 0.776240I
b = 0.90356 + 1.37817I
0.65149 5.44524I 1.78951 + 4.96299I
u = 0.635239 1.022560I
a = 0.614017 0.776240I
b = 0.90356 1.37817I
0.65149 + 5.44524I 1.78951 4.96299I
u = 0.732861 + 0.997527I
a = 0.376611 0.095684I
b = 0.241631 + 0.261608I
9.58271 + 2.96759I 0.28434 4.02482I
u = 0.732861 0.997527I
a = 0.376611 + 0.095684I
b = 0.241631 0.261608I
9.58271 2.96759I 0.28434 + 4.02482I
u = 0.621521 + 1.087370I
a = 0.242691 1.035660I
b = 1.15837 1.98145I
0.03477 + 9.00564I 0.80205 7.81650I
u = 0.621521 1.087370I
a = 0.242691 + 1.035660I
b = 1.15837 + 1.98145I
0.03477 9.00564I 0.80205 + 7.81650I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
19
8u
18
+ ··· 47u + 9)(u
57
+ 25u
56
+ ··· + 14u 1)
c
2
(u
19
+ 4u
17
+ ··· + u + 3)(u
57
u
56
+ ··· 4u 1)
c
3
(u
19
+ 10u
17
+ ··· + 3u + 1)(u
57
+ u
56
+ ··· + 20u 1)
c
4
(u
19
+ u
18
+ ··· + 2u 1)(u
57
+ 57u
55
+ ··· 5u 1)
c
5
(u
19
+ u
18
+ ··· + 2u 1)(u
57
+ 2u
56
+ ··· 20u 8)
c
6
(u
19
+ 4u
17
+ ··· + u 3)(u
57
u
56
+ ··· 4u 1)
c
7
(u
19
+ 10u
17
+ ··· + 3u 1)(u
57
+ u
56
+ ··· + 20u 1)
c
8
(u
19
15u
18
+ ··· + 17u 3)
· (u
57
+ 12u
56
+ ··· + 6371062u 656059)
c
9
(u
19
+ 3u
18
+ ··· u
2
+ 1)(u
57
16u
56
+ ··· + 4109u 103)
c
10
(u
19
+ 4u
18
+ ··· + 5u + 1)(u
57
+ 17u
56
+ ··· 1408u 121)
c
11
(u
19
u
18
+ ··· + 6u + 1)(u
57
2u
56
+ ··· + 2391u 4381)
c
12
(u
19
+ 2u
18
+ ··· u + 1)(u
57
5u
56
+ ··· 406462u 931379)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
19
+ 8y
18
+ ··· 131y 81)(y
57
+ 17y
56
+ ··· + 290y 1)
c
2
, c
6
(y
19
+ 8y
18
+ ··· 47y 9)(y
57
+ 25y
56
+ ··· + 14y 1)
c
3
, c
7
(y
19
+ 20y
18
+ ··· 7y 1)(y
57
+ 81y
56
+ ··· 90y 1)
c
4
(y
19
+ 13y
18
+ ··· + 12y 1)(y
57
+ 114y
56
+ ··· 39y 1)
c
5
(y
19
+ y
18
+ ··· 6y 1)(y
57
6y
56
+ ··· + 3024y 64)
c
8
(y
19
19y
18
+ ··· 101y 9)
· (y
57
102y
56
+ ··· + 13754392721800y 430413411481)
c
9
(y
19
21y
18
+ ··· + 2y 1)(y
57
40y
56
+ ··· + 8276171y 10609)
c
10
(y
19
8y
18
+ ··· + 7y 1)(y
57
+ 5y
56
+ ··· 20328y 14641)
c
11
(y
19
19y
18
+ ··· 48y 1)
· (y
57
106y
56
+ ··· 199156203y 19193161)
c
12
(y
19
+ 6y
18
+ ··· y 1)
· (y
57
+ 47y
56
+ ··· 15214664971620y 867466841641)
19