12n
0464
(K12n
0464
)
A knot diagram
1
Linearized knot diagam
3 5 12 10 2 11 4 3 7 5 9 8
Solving Sequence
5,10
11
4,7
6 9 12 3 2 1 8
c
10
c
4
c
6
c
9
c
11
c
3
c
2
c
1
c
8
c
5
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−9u
10
+ 50u
9
110u
8
+ 84u
7
+ 135u
6
318u
5
+ 249u
4
+ 140u
3
+ 64u
2
+ 356b 268u + 100,
209u
10
1438u
9
+ ··· + 712a + 1396,
u
11
8u
10
+ 28u
9
48u
8
+ 21u
7
+ 72u
6
147u
5
+ 118u
4
46u
3
+ 12u
2
+ 4u 8i
I
u
2
= h−u
13
2u
12
+ 7u
11
+ 14u
10
18u
9
37u
8
+ 18u
7
+ 40u
6
3u
4
11u
3
27u
2
+ 2b + 6u + 16,
16u
13
+ 125u
11
+ ··· + 38a 152, u
14
9u
12
+ 33u
10
60u
8
+ 48u
6
+ 6u
4
37u
2
+ 19i
I
u
3
= h−u
2
a + au + u
2
+ b u, u
5
a 3u
4
a + 2u
5
+ 4u
3
a 9u
4
+ 13u
3
+ 4a
2
+ au 4u
2
8a 6u 7,
u
6
5u
5
+ 10u
4
8u
3
+ u
2
2u + 4i
I
v
1
= ha, b
2
+ b + 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9u
10
+ 50u
9
+ · · · + 356b + 100, 209u
10
1438u
9
+ · · · + 712a +
1396, u
11
8u
10
+ · · · + 4u 8i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
a
7
=
0.293539u
10
+ 2.01966u
9
+ ··· 1.18539u 1.96067
0.0252809u
10
0.140449u
9
+ ··· + 0.752809u 0.280899
a
6
=
0.0351124u
10
0.306180u
9
+ ··· + 0.601124u + 0.387640
0.266854u
10
1.92697u
9
+ ··· + 2.16854u + 2.14607
a
9
=
0.144663u
10
+ 0.831461u
9
+ ··· 0.696629u + 0.162921
0.325843u
10
+ 1.92135u
9
+ ··· + 0.741573u 1.15730
a
12
=
0.293539u
10
2.01966u
9
+ ··· + 0.185393u + 2.96067
0.328652u
10
2.32584u
9
+ ··· + 0.786517u + 2.34831
a
3
=
0.181180u
10
+ 1.08989u
9
+ ··· + 1.43820u 1.32022
0.325843u
10
+ 1.92135u
9
+ ··· + 0.741573u 1.15730
a
2
=
0.181180u
10
+ 1.08989u
9
+ ··· + 1.43820u 1.32022
0.926966u
10
+ 5.98315u
9
+ ··· + 0.730337u 4.03371
a
1
=
0.0561798u
10
0.410112u
9
+ ··· + 1.93820u + 0.179775
0.426966u
10
+ 1.98315u
9
+ ··· + 0.730337u 1.03371
a
8
=
0.105337u
10
0.918539u
9
+ ··· 0.196629u + 1.16292
0.424157u
10
3.07865u
9
+ ··· + 1.74157u + 2.84270
(ii) Obstruction class = 1
(iii) Cusp Shapes =
925
178
u
10
+
3143
89
u
9
9104
89
u
8
+
10784
89
u
7
+
9247
178
u
6
29395
89
u
5
+
64099
178
u
4
11812
89
u
3
+
2211
89
u
2
620
89
u
3326
89
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
23u
10
+ ··· + 21u 1
c
2
, c
5
, c
11
u
11
+ u
10
+ ··· u 1
c
3
, c
9
u
11
u
10
+ 2u
8
+ 2u
7
2u
5
+ 4u
4
+ 3u
3
+ u
2
u 1
c
4
, c
10
u
11
8u
10
+ ··· + 4u 8
c
6
u
11
+ u
10
+ ··· 145u 67
c
7
u
11
+ u
10
+ ··· + 56u + 8
c
8
u
11
4u
10
+ ··· 17u 8
c
12
u
11
+ 5u
10
+ ··· 76u 52
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ 13y
10
+ ··· + 49y 1
c
2
, c
5
, c
11
y
11
23y
10
+ ··· + 21y 1
c
3
, c
9
y
11
y
10
+ ··· + 3y 1
c
4
, c
10
y
11
8y
10
+ ··· + 208y 64
c
6
y
11
+ 31y
10
+ ··· 35389y 4489
c
7
y
11
7y
10
+ ··· + 1792y 64
c
8
y
11
+ 12y
10
+ ··· + 961y 64
c
12
y
11
+ 11y
10
+ ··· + 13056y 2704
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.272490 + 0.288412I
a = 1.145090 + 0.161696I
b = 0.637420 0.913219I
2.97208 5.10948I 3.26197 + 5.94709I
u = 1.272490 0.288412I
a = 1.145090 0.161696I
b = 0.637420 + 0.913219I
2.97208 + 5.10948I 3.26197 5.94709I
u = 1.31836
a = 1.74186
b = 1.15079
6.32228 14.5780
u = 0.006189 + 0.618185I
a = 0.454297 0.805039I
b = 0.298680 + 0.644156I
0.98614 + 1.71648I 1.51156 4.88656I
u = 0.006189 0.618185I
a = 0.454297 + 0.805039I
b = 0.298680 0.644156I
0.98614 1.71648I 1.51156 + 4.88656I
u = 1.43000
a = 1.17850
b = 0.620255
3.22805 2.67390
u = 0.399863
a = 0.0959405
b = 0.613457
1.24652 9.60770
u = 1.42673 + 1.37332I
a = 0.555878 0.153340I
b = 0.957539 0.934630I
9.21923 + 1.76238I 4.63285 2.25341I
u = 1.42673 1.37332I
a = 0.555878 + 0.153340I
b = 0.957539 + 0.934630I
9.21923 1.76238I 4.63285 + 2.25341I
u = 1.56272 + 1.31035I
a = 1.214570 0.441747I
b = 1.05056 + 0.96763I
8.8572 12.5090I 5.18674 + 5.91274I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56272 1.31035I
a = 1.214570 + 0.441747I
b = 1.05056 0.96763I
8.8572 + 12.5090I 5.18674 5.91274I
6
II. I
u
2
= h−u
13
2u
12
+ · · · + 2b + 16, 16u
13
+ 125u
11
+ · · · + 38a
152, u
14
9u
12
+ · · · 37u
2
+ 19i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
a
7
=
0.421053u
13
3.28947u
11
+ ··· 7.07895u + 4
1
2
u
13
+ u
12
+ ··· 3u 8
a
6
=
8
19
u
13
+
1
2
u
12
+ ···
79
38
u 4
u
13
+
3
2
u
12
+ ··· 3u
35
2
a
9
=
33
38
u
13
+
3
2
u
12
+ ···
119
38
u 10
3
2
u
13
+ 2u
12
+ ··· 10u
33
2
a
12
=
0.421053u
13
+ 3.28947u
11
+ ··· + 6.07895u + 5
1
2
u
12
+
1
2
u
11
+ ··· + 4u + 8
a
3
=
0.631579u
13
0.500000u
12
+ ··· 6.86842u + 6.50000
3
2
u
13
2u
12
+ ··· 10u +
33
2
a
2
=
0.631579u
13
0.500000u
12
+ ··· 6.86842u + 6.50000
5
2
u
13
5
2
u
12
+ ··· 22u + 26
a
1
=
30
19
u
13
+
1
2
u
12
+ ···
312
19
u 7
5
2
u
13
3
2
u
12
+ ···
35
2
u + 8
a
8
=
35
38
u
13
+
3
2
u
12
+ ···
163
19
u 15
u
13
+
5
2
u
12
+ ···
9
2
u 27
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
12
+ 18u
10
37u
8
+ 17u
6
+ 30u
4
24u
2
16
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
7u
13
+ ··· + 3u + 1
c
2
u
14
3u
13
+ ··· 3u + 1
c
3
, c
9
u
14
+ 7u
13
+ ··· + 4u + 1
c
4
, c
10
u
14
9u
12
+ 33u
10
60u
8
+ 48u
6
+ 6u
4
37u
2
+ 19
c
5
, c
11
u
14
+ 3u
13
+ ··· + 3u + 1
c
6
u
14
+ 8u
13
+ ··· + 449u + 137
c
7
u
14
+ 5u
12
+ ··· 8u + 8
c
8
(u
7
2u
5
+ u
4
+ u
3
+ u 1)
2
c
12
u
14
4u
12
+ 6u
10
+ 5u
8
8u
6
15u
4
+ 49u
2
+ 19
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
y
13
+ ··· + 5y + 1
c
2
, c
5
, c
11
y
14
+ 7y
13
+ ··· 3y + 1
c
3
, c
9
y
14
3y
13
+ ··· 10y + 1
c
4
, c
10
(y
7
9y
6
+ 33y
5
60y
4
+ 48y
3
+ 6y
2
37y + 19)
2
c
6
y
14
20y
13
+ ··· 90357y + 18769
c
7
y
14
+ 10y
13
+ ··· + 448y + 64
c
8
(y
7
4y
6
+ 6y
5
3y
4
3y
3
+ 4y
2
+ y 1)
2
c
12
(y
7
4y
6
+ 6y
5
+ 5y
4
8y
3
15y
2
+ 49y + 19)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.869734I
a = 0.225055 + 0.152531I
b = 0.718860 + 0.558616I
1.32199 5.17190
u = 0.869734I
a = 0.225055 0.152531I
b = 0.718860 0.558616I
1.32199 5.17190
u = 1.100240 + 0.309359I
a = 0.430002 + 1.302590I
b = 0.504604 0.512077I
4.63494 + 5.44459I 7.69561 8.32422I
u = 1.100240 0.309359I
a = 0.430002 1.302590I
b = 0.504604 + 0.512077I
4.63494 5.44459I 7.69561 + 8.32422I
u = 1.100240 + 0.309359I
a = 1.59402 0.26059I
b = 1.05779 1.16536I
4.63494 5.44459I 7.69561 + 8.32422I
u = 1.100240 0.309359I
a = 1.59402 + 0.26059I
b = 1.05779 + 1.16536I
4.63494 + 5.44459I 7.69561 8.32422I
u = 1.266100 + 0.207453I
a = 0.621317 + 0.689999I
b = 0.695772 0.312580I
5.47716 2.46971I 8.53877 + 0.63512I
u = 1.266100 0.207453I
a = 0.621317 0.689999I
b = 0.695772 + 0.312580I
5.47716 + 2.46971I 8.53877 0.63512I
u = 1.266100 + 0.207453I
a = 1.294320 + 0.392263I
b = 1.11920 + 0.89289I
5.47716 + 2.46971I 8.53877 0.63512I
u = 1.266100 0.207453I
a = 1.294320 0.392263I
b = 1.11920 0.89289I
5.47716 2.46971I 8.53877 + 0.63512I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.50572 + 0.25250I
a = 1.53985 0.28019I
b = 0.518967 + 0.078684I
6.49871 + 4.55112I 0.32033 + 2.72283I
u = 1.50572 0.25250I
a = 1.53985 + 0.28019I
b = 0.518967 0.078684I
6.49871 4.55112I 0.32033 2.72283I
u = 1.50572 + 0.25250I
a = 1.398080 0.188533I
b = 1.28556 1.10250I
6.49871 4.55112I 0.32033 2.72283I
u = 1.50572 0.25250I
a = 1.398080 + 0.188533I
b = 1.28556 + 1.10250I
6.49871 + 4.55112I 0.32033 + 2.72283I
11
III. I
u
3
=
h−u
2
a+au+u
2
+bu, u
5
a+2u
5
+· · ·−8a7, u
6
5u
5
+10u
4
8u
3
+u
2
2u+4i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
a
7
=
a
u
2
a au u
2
+ u
a
6
=
au u
2
+ a + u
u
3
a u
4
+ u
2
a + u
3
au u
2
+ u
a
9
=
1
2
u
5
a
3
4
u
5
+ ··· a + 2
u
5
a
3
2
u
5
+ ··· 2a + 3
a
12
=
1
4
u
5
3
4
u
4
+ u
3
+ a
3
4
u 1
1
2
u
5
3
2
u
4
+ 2u
3
+ au
3
2
u 1
a
3
=
1
2
u
5
a
1
4
u
5
+ ··· + a +
1
2
u
5
a + 3u
4
a u
5
3u
3
a + 4u
4
6u
3
+ u
2
+ 2a + u + 3
a
2
=
1
2
u
5
a
1
4
u
5
+ ··· + a +
1
2
2u
5
a + 8u
4
a u
5
10u
3
a + 3u
4
+ u
2
a 5u
3
+ u
2
+ 6a + 2u + 3
a
1
=
u
5
a +
3
4
u
5
+ ··· 2a + 1
3u
4
a +
1
2
u
5
+ ··· 4a + 1
a
8
=
u
4
a u
3
a u
4
u
2
a + u
3
+ a
u
4
a u
3
a u
4
+ u
3
au u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
5
41u
4
+ 56u
3
10u
2
12u 38
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
10u
11
+ ··· + 23u + 1
c
2
, c
5
, c
11
u
12
5u
10
+ ··· 3u + 1
c
3
, c
9
u
12
2u
11
+ ··· 6u + 1
c
4
, c
10
(u
6
5u
5
+ 10u
4
8u
3
+ u
2
2u + 4)
2
c
6
u
12
+ 7u
11
+ ··· 841u + 683
c
7
u
12
3u
11
+ ··· + 184u + 83
c
8
(u
6
+ 2u
5
+ 7u
4
+ u
3
+ 5u
2
+ 1)
2
c
12
(u
6
2u
5
+ 6u
4
2u
3
+ 10u
2
2u + 5)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
+ 22y
11
+ ··· + 635y + 1
c
2
, c
5
, c
11
y
12
10y
11
+ ··· + 23y + 1
c
3
, c
9
y
12
2y
11
+ ··· 10y + 1
c
4
, c
10
(y
6
5y
5
+ 22y
4
56y
3
+ 49y
2
+ 4y + 16)
2
c
6
y
12
+ 5y
11
+ ··· + 483871y + 466489
c
7
y
12
11y
11
+ ··· 9288y + 6889
c
8
(y
6
+ 10y
5
+ 55y
4
+ 71y
3
+ 39y
2
+ 10y + 1)
2
c
12
(y
6
+ 8y
5
+ 48y
4
+ 118y
3
+ 152y
2
+ 96y + 25)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.416505 + 0.576021I
a = 1.267250 + 0.372963I
b = 0.462791 0.185881I
0.82381 + 1.88495I 3.85860 4.25494I
u = 0.416505 + 0.576021I
a = 0.341182 0.466302I
b = 0.662439 + 0.575225I
0.82381 + 1.88495I 3.85860 4.25494I
u = 0.416505 0.576021I
a = 1.267250 0.372963I
b = 0.462791 + 0.185881I
0.82381 1.88495I 3.85860 + 4.25494I
u = 0.416505 0.576021I
a = 0.341182 + 0.466302I
b = 0.662439 0.575225I
0.82381 1.88495I 3.85860 + 4.25494I
u = 1.44321 + 0.21109I
a = 1.46241 0.27942I
b = 1.35407 1.14684I
6.77592 4.75667I 18.9940 + 11.0912I
u = 1.44321 + 0.21109I
a = 1.89212 0.31592I
b = 0.656685 + 0.167255I
6.77592 4.75667I 18.9940 + 11.0912I
u = 1.44321 0.21109I
a = 1.46241 + 0.27942I
b = 1.35407 + 1.14684I
6.77592 + 4.75667I 18.9940 11.0912I
u = 1.44321 0.21109I
a = 1.89212 + 0.31592I
b = 0.656685 0.167255I
6.77592 + 4.75667I 18.9940 11.0912I
u = 1.47330 + 1.24522I
a = 1.222760 0.470970I
b = 0.951529 + 0.941807I
9.24467 5.12766I 4.64737 + 2.37505I
u = 1.47330 + 1.24522I
a = 0.489110 0.210227I
b = 0.94550 1.05898I
9.24467 5.12766I 4.64737 + 2.37505I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.47330 1.24522I
a = 1.222760 + 0.470970I
b = 0.951529 0.941807I
9.24467 + 5.12766I 4.64737 2.37505I
u = 1.47330 1.24522I
a = 0.489110 + 0.210227I
b = 0.94550 + 1.05898I
9.24467 + 5.12766I 4.64737 2.37505I
16
IV. I
v
1
= ha, b
2
+ b + 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
1
0
a
11
=
1
0
a
4
=
1
0
a
7
=
0
b
a
6
=
b
b
a
9
=
1
b + 1
a
12
=
b
b
a
3
=
b 2
b 1
a
2
=
1
b 1
a
1
=
b
b
a
8
=
b
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8b 4
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
11
u
2
u + 1
c
2
, c
3
, c
7
c
8
, c
9
u
2
+ u + 1
c
4
, c
10
, c
12
u
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
11
y
2
+ y + 1
c
4
, c
10
, c
12
y
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
v = 1.00000
a = 0
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
11
23u
10
+ ··· + 21u 1)(u
12
10u
11
+ ··· + 23u + 1)
· (u
14
7u
13
+ ··· + 3u + 1)
c
2
(u
2
+ u + 1)(u
11
+ u
10
+ ··· u 1)(u
12
5u
10
+ ··· 3u + 1)
· (u
14
3u
13
+ ··· 3u + 1)
c
3
, c
9
(u
2
+ u + 1)(u
11
u
10
+ 2u
8
+ 2u
7
2u
5
+ 4u
4
+ 3u
3
+ u
2
u 1)
· (u
12
2u
11
+ ··· 6u + 1)(u
14
+ 7u
13
+ ··· + 4u + 1)
c
4
, c
10
u
2
(u
6
5u
5
+ ··· 2u + 4)
2
(u
11
8u
10
+ ··· + 4u 8)
· (u
14
9u
12
+ 33u
10
60u
8
+ 48u
6
+ 6u
4
37u
2
+ 19)
c
5
, c
11
(u
2
u + 1)(u
11
+ u
10
+ ··· u 1)(u
12
5u
10
+ ··· 3u + 1)
· (u
14
+ 3u
13
+ ··· + 3u + 1)
c
6
(u
2
u + 1)(u
11
+ u
10
+ ··· 145u 67)(u
12
+ 7u
11
+ ··· 841u + 683)
· (u
14
+ 8u
13
+ ··· + 449u + 137)
c
7
(u
2
+ u + 1)(u
11
+ u
10
+ ··· + 56u + 8)(u
12
3u
11
+ ··· + 184u + 83)
· (u
14
+ 5u
12
+ ··· 8u + 8)
c
8
(u
2
+ u + 1)(u
6
+ 2u
5
+ 7u
4
+ u
3
+ 5u
2
+ 1)
2
· ((u
7
2u
5
+ u
4
+ u
3
+ u 1)
2
)(u
11
4u
10
+ ··· 17u 8)
c
12
u
2
(u
6
2u
5
+ 6u
4
2u
3
+ 10u
2
2u + 5)
2
· (u
11
+ 5u
10
+ ··· 76u 52)
· (u
14
4u
12
+ 6u
10
+ 5u
8
8u
6
15u
4
+ 49u
2
+ 19)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
11
+ 13y
10
+ ··· + 49y 1)(y
12
+ 22y
11
+ ··· + 635y + 1)
· (y
14
y
13
+ ··· + 5y + 1)
c
2
, c
5
, c
11
(y
2
+ y + 1)(y
11
23y
10
+ ··· + 21y 1)(y
12
10y
11
+ ··· + 23y + 1)
· (y
14
+ 7y
13
+ ··· 3y + 1)
c
3
, c
9
(y
2
+ y + 1)(y
11
y
10
+ ··· + 3y 1)(y
12
2y
11
+ ··· 10y + 1)
· (y
14
3y
13
+ ··· 10y + 1)
c
4
, c
10
y
2
(y
6
5y
5
+ 22y
4
56y
3
+ 49y
2
+ 4y + 16)
2
· (y
7
9y
6
+ 33y
5
60y
4
+ 48y
3
+ 6y
2
37y + 19)
2
· (y
11
8y
10
+ ··· + 208y 64)
c
6
(y
2
+ y + 1)(y
11
+ 31y
10
+ ··· 35389y 4489)
· (y
12
+ 5y
11
+ ··· + 483871y + 466489)
· (y
14
20y
13
+ ··· 90357y + 18769)
c
7
(y
2
+ y + 1)(y
11
7y
10
+ ··· + 1792y 64)
· (y
12
11y
11
+ ··· 9288y + 6889)(y
14
+ 10y
13
+ ··· + 448y + 64)
c
8
(y
2
+ y + 1)(y
6
+ 10y
5
+ 55y
4
+ 71y
3
+ 39y
2
+ 10y + 1)
2
· (y
7
4y
6
+ 6y
5
3y
4
3y
3
+ 4y
2
+ y 1)
2
· (y
11
+ 12y
10
+ ··· + 961y 64)
c
12
y
2
(y
6
+ 8y
5
+ 48y
4
+ 118y
3
+ 152y
2
+ 96y + 25)
2
· (y
7
4y
6
+ 6y
5
+ 5y
4
8y
3
15y
2
+ 49y + 19)
2
· (y
11
+ 11y
10
+ ··· + 13056y 2704)
22