12n
0466
(K12n
0466
)
A knot diagram
1
Linearized knot diagam
3 6 9 8 2 11 12 3 4 6 7 10
Solving Sequence
6,11
7 12
3,8
9 2 1 5 4 10
c
6
c
11
c
7
c
8
c
2
c
1
c
5
c
4
c
10
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−296878516u
31
276724358u
30
+ ··· + 441171721b 537239537,
397220095u
31
1740337107u
30
+ ··· + 882343442a 7870777298, u
32
+ 2u
31
+ ··· + 6u + 1i
I
u
2
= hb 1, a
2
+ 2a 2u 3, u
2
+ u 1i
I
u
3
= hb + 1, a 1, u
2
u 1i
* 3 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.97 × 10
8
u
31
2.77 × 10
8
u
30
+ · · · + 4.41 × 10
8
b 5.37 × 10
8
, 3.97 ×
10
8
u
31
1.74×10
9
u
30
+· · · +8.82×10
8
a7.87×10
9
, u
32
+2u
31
+· · · +6u +1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
12
=
u
u
3
+ u
a
3
=
0.450188u
31
+ 1.97240u
30
+ ··· 8.67806u + 8.92031
0.672932u
31
+ 0.627249u
30
+ ··· + 0.391427u + 1.21776
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
2.40634u
31
3.60527u
30
+ ··· + 10.8122u 12.0712
0.218460u
31
0.291561u
30
+ ··· + 2.47123u 1.19894
a
2
=
1.12312u
31
+ 2.59965u
30
+ ··· 8.28663u + 10.1381
0.672932u
31
+ 0.627249u
30
+ ··· + 0.391427u + 1.21776
a
1
=
u
5
+ 2u
3
+ u
u
5
3u
3
+ u
a
5
=
1.26155u
31
2.69290u
30
+ ··· + 10.8624u 9.38644
1.03259u
31
0.976097u
30
+ ··· 1.09592u 1.51802
a
4
=
0.145728u
31
1.66532u
30
+ ··· + 12.4977u 7.36530
1.43787u
31
1.24356u
30
+ ··· 2.16974u 1.82405
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
619975605
441171721
u
31
1193144219
441171721
u
30
+ ··· +
5092498689
441171721
u +
1186500205
441171721
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
32
+ 37u
31
+ ··· + 305u + 1
c
2
, c
5
u
32
+ 3u
31
+ ··· 7u 1
c
3
, c
8
, c
9
u
32
+ u
31
+ ··· 4u + 4
c
4
u
32
3u
31
+ ··· + 12u 4
c
6
, c
7
, c
10
c
11
u
32
+ 2u
31
+ ··· + 6u + 1
c
12
u
32
+ 4u
31
+ ··· 20u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
32
77y
31
+ ··· 68569y + 1
c
2
, c
5
y
32
37y
31
+ ··· 305y + 1
c
3
, c
8
, c
9
y
32
27y
31
+ ··· 208y + 16
c
4
y
32
+ 33y
31
+ ··· 336y + 16
c
6
, c
7
, c
10
c
11
y
32
36y
31
+ ··· 56y + 1
c
12
y
32
+ 36y
31
+ ··· 568y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.647923 + 0.702860I
a = 0.11556 1.50516I
b = 1.60683 + 0.23584I
5.40621 + 7.69916I 6.58632 5.74078I
u = 0.647923 0.702860I
a = 0.11556 + 1.50516I
b = 1.60683 0.23584I
5.40621 7.69916I 6.58632 + 5.74078I
u = 0.934535
a = 0.920748
b = 1.27591
0.214319 11.1130
u = 0.528252 + 0.752905I
a = 0.219575 1.040740I
b = 1.65258 + 0.07144I
9.84928 2.50165I 2.86477 + 2.84418I
u = 0.528252 0.752905I
a = 0.219575 + 1.040740I
b = 1.65258 0.07144I
9.84928 + 2.50165I 2.86477 2.84418I
u = 0.383863 + 0.766338I
a = 0.382365 0.514382I
b = 1.62188 0.11406I
6.19158 2.80814I 5.10038 + 0.76938I
u = 0.383863 0.766338I
a = 0.382365 + 0.514382I
b = 1.62188 + 0.11406I
6.19158 + 2.80814I 5.10038 0.76938I
u = 0.750792
a = 1.84633
b = 0.310110
5.68749 17.7080
u = 0.505153 + 0.538065I
a = 0.446790 + 1.310620I
b = 0.571805 0.732824I
1.93515 + 4.07265I 8.92952 7.04568I
u = 0.505153 0.538065I
a = 0.446790 1.310620I
b = 0.571805 + 0.732824I
1.93515 4.07265I 8.92952 + 7.04568I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.395138 + 0.481331I
a = 0.551243 0.194239I
b = 0.642691 + 0.571386I
1.68006 0.53375I 7.96422 0.32995I
u = 0.395138 0.481331I
a = 0.551243 + 0.194239I
b = 0.642691 0.571386I
1.68006 + 0.53375I 7.96422 + 0.32995I
u = 1.40514 + 0.25786I
a = 0.848313 + 0.771560I
b = 1.59035 0.06318I
0.512682 0.890588I 8.15263 + 0.I
u = 1.40514 0.25786I
a = 0.848313 0.771560I
b = 1.59035 + 0.06318I
0.512682 + 0.890588I 8.15263 + 0.I
u = 1.44428 + 0.09174I
a = 0.42149 1.57076I
b = 0.611773 + 0.763659I
4.34598 + 2.60375I 7.93484 3.36675I
u = 1.44428 0.09174I
a = 0.42149 + 1.57076I
b = 0.611773 0.763659I
4.34598 2.60375I 7.93484 + 3.36675I
u = 1.44949
a = 0.265813
b = 1.38846
8.83218 9.93110
u = 1.45288 + 0.07180I
a = 0.88013 + 1.22133I
b = 0.795382 0.670343I
7.57700 1.16778I 11.36341 + 0.54162I
u = 1.45288 0.07180I
a = 0.88013 1.22133I
b = 0.795382 + 0.670343I
7.57700 + 1.16778I 11.36341 0.54162I
u = 1.51955 + 0.16796I
a = 0.08132 1.78171I
b = 0.464019 + 0.904411I
8.62955 6.62987I 12.50269 + 5.26876I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.51955 0.16796I
a = 0.08132 + 1.78171I
b = 0.464019 0.904411I
8.62955 + 6.62987I 12.50269 5.26876I
u = 0.299017 + 0.362824I
a = 0.106458 + 1.400860I
b = 0.751935 0.325766I
1.32881 1.04587I 0.13410 + 4.26985I
u = 0.299017 0.362824I
a = 0.106458 1.400860I
b = 0.751935 + 0.325766I
1.32881 + 1.04587I 0.13410 4.26985I
u = 1.52451 + 0.26507I
a = 0.93070 + 1.22794I
b = 1.61492 0.22198I
3.16368 + 6.23347I 6.00000 3.63332I
u = 1.52451 0.26507I
a = 0.93070 1.22794I
b = 1.61492 + 0.22198I
3.16368 6.23347I 6.00000 + 3.63332I
u = 0.451835
a = 0.432993
b = 0.202201
0.642131 15.9520
u = 1.58469
a = 0.466896
b = 0.692717
7.78318 17.5750
u = 1.58841 + 0.23470I
a = 0.92703 + 1.56136I
b = 1.56211 0.33651I
2.01653 11.20740I 0
u = 1.58841 0.23470I
a = 0.92703 1.56136I
b = 1.56211 + 0.33651I
2.01653 + 11.20740I 0
u = 1.61270
a = 0.848466
b = 0.0619566
13.8091 18.0020
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.68667
a = 1.46963
b = 1.31101
9.57646 6.00000
u = 0.145893
a = 9.44166
b = 1.06237
3.33910 1.65970
8
II. I
u
2
= hb 1, a
2
+ 2a 2u 3, u
2
+ u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u 1
a
12
=
u
u + 1
a
3
=
a
1
a
8
=
u
u
a
9
=
au 2
au 2u
a
2
=
a + 1
1
a
1
=
1
0
a
5
=
a
1
a
4
=
au u + 1
au a + u 2
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
8
c
9
(u
2
2)
2
c
6
, c
7
, c
12
(u
2
+ u 1)
2
c
10
, c
11
(u
2
u 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
8
c
9
(y 2)
4
c
6
, c
7
, c
10
c
11
, c
12
(y
2
3y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.28825
b = 1.00000
4.27683 12.0000
u = 0.618034
a = 3.28825
b = 1.00000
4.27683 12.0000
u = 1.61803
a = 0.125968
b = 1.00000
12.1725 12.0000
u = 1.61803
a = 1.87403
b = 1.00000
12.1725 12.0000
12
III. I
u
3
= hb + 1, a 1, u
2
u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u 1
a
12
=
u
u 1
a
3
=
1
1
a
8
=
u
u
a
9
=
u
u
a
2
=
0
1
a
1
=
1
0
a
5
=
1
1
a
4
=
1
1
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
8
c
9
u
2
c
5
(u + 1)
2
c
6
, c
7
u
2
u 1
c
10
, c
11
, c
12
u
2
+ u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
8
c
9
y
2
c
6
, c
7
, c
10
c
11
, c
12
y
2
3y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.00000
b = 1.00000
0.657974 2.00000
u = 1.61803
a = 1.00000
b = 1.00000
7.23771 2.00000
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
32
+ 37u
31
+ ··· + 305u + 1)
c
2
((u 1)
2
)(u + 1)
4
(u
32
+ 3u
31
+ ··· 7u 1)
c
3
, c
8
, c
9
u
2
(u
2
2)
2
(u
32
+ u
31
+ ··· 4u + 4)
c
4
u
2
(u
2
2)
2
(u
32
3u
31
+ ··· + 12u 4)
c
5
((u 1)
4
)(u + 1)
2
(u
32
+ 3u
31
+ ··· 7u 1)
c
6
, c
7
(u
2
u 1)(u
2
+ u 1)
2
(u
32
+ 2u
31
+ ··· + 6u + 1)
c
10
, c
11
((u
2
u 1)
2
)(u
2
+ u 1)(u
32
+ 2u
31
+ ··· + 6u + 1)
c
12
((u
2
+ u 1)
3
)(u
32
+ 4u
31
+ ··· 20u + 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
32
77y
31
+ ··· 68569y + 1)
c
2
, c
5
((y 1)
6
)(y
32
37y
31
+ ··· 305y + 1)
c
3
, c
8
, c
9
y
2
(y 2)
4
(y
32
27y
31
+ ··· 208y + 16)
c
4
y
2
(y 2)
4
(y
32
+ 33y
31
+ ··· 336y + 16)
c
6
, c
7
, c
10
c
11
((y
2
3y + 1)
3
)(y
32
36y
31
+ ··· 56y + 1)
c
12
((y
2
3y + 1)
3
)(y
32
+ 36y
31
+ ··· 568y + 1)
18