12n
0467
(K12n
0467
)
A knot diagram
1
Linearized knot diagam
3 6 9 8 2 11 12 3 4 1 7 8
Solving Sequence
3,8
9 4 5
10,12
1 2 7 11 6
c
8
c
3
c
4
c
9
c
12
c
1
c
7
c
11
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h140613342u
26
+ 233504827u
25
+ ··· + 1306898116b + 2324027520,
315767111u
26
+ 587740472u
25
+ ··· + 1306898116a 1648431188, u
27
+ u
26
+ ··· 4u 4i
I
u
2
= h2b 2a + u, 2a
2
2au 2a + u 1, u
2
2i
I
v
1
= ha, b + v + 1, v
2
+ v 1i
* 3 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.41 × 10
8
u
26
+ 2 .34 × 10
8
u
25
+ · · · + 1.31 × 10
9
b + 2.32 × 10
9
, 3.16 ×
10
8
u
26
+ 5.88 × 10
8
u
25
+ · · · + 1.31 × 10
9
a 1.65 × 10
9
, u
27
+ u
26
+ · · · 4u 4i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
5
=
u
3
+ 2u
u
3
+ u
a
10
=
u
2
+ 1
u
4
2u
2
a
12
=
0.241616u
26
0.449722u
25
+ ··· 13.1892u + 1.26133
0.107593u
26
0.178671u
25
+ ··· 2.19364u 1.77828
a
1
=
0.134023u
26
0.271051u
25
+ ··· 10.9955u + 3.03961
0.107593u
26
0.178671u
25
+ ··· 2.19364u 1.77828
a
2
=
0.134023u
26
0.271051u
25
+ ··· 10.9955u + 3.03961
0.0945547u
26
0.183568u
25
+ ··· 3.27784u 2.32639
a
7
=
0.673320u
26
0.574468u
25
+ ··· 15.4301u + 0.529920
0.102694u
26
+ 0.0537208u
25
+ ··· 3.65606u 0.825481
a
11
=
0.00809889u
26
+ 0.000418223u
25
+ ··· + 2.05151u + 3.50212
0.355054u
26
+ 0.372385u
25
+ ··· + 7.65668u + 1.09099
a
6
=
0.409090u
26
+ 0.0395121u
25
+ ··· 4.08989u + 7.12801
0.180513u
26
+ 0.126995u
25
+ ··· + 3.62778u + 1.76201
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9879130
326724529
u
26
+
101640265
326724529
u
25
+ ···
4373584718
326724529
u +
3242559308
326724529
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
27
+ 7u
26
+ ··· + 73u + 1
c
2
, c
5
u
27
+ 3u
26
+ ··· + 7u + 1
c
3
, c
8
, c
9
u
27
+ u
26
+ ··· 4u 4
c
4
u
27
3u
26
+ ··· + 612u + 220
c
6
, c
7
, c
11
c
12
u
27
2u
26
+ ··· 6u + 1
c
10
u
27
2u
26
+ ··· 20u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
27
+ 33y
26
+ ··· + 4113y 1
c
2
, c
5
y
27
7y
26
+ ··· + 73y 1
c
3
, c
8
, c
9
y
27
37y
26
+ ··· + 336y 16
c
4
y
27
97y
26
+ ··· + 1370704y 48400
c
6
, c
7
, c
11
c
12
y
27
30y
26
+ ··· + 32y 1
c
10
y
27
+ 42y
26
+ ··· + 160y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.910258 + 0.590456I
a = 2.00698 + 1.21820I
b = 1.50366 0.20859I
3.25530 + 7.25549I 5.95539 6.08777I
u = 0.910258 0.590456I
a = 2.00698 1.21820I
b = 1.50366 + 0.20859I
3.25530 7.25549I 5.95539 + 6.08777I
u = 1.017290 + 0.392893I
a = 1.59907 0.86702I
b = 1.384080 + 0.097780I
2.42951 1.33319I 4.55270 + 1.10070I
u = 1.017290 0.392893I
a = 1.59907 + 0.86702I
b = 1.384080 0.097780I
2.42951 + 1.33319I 4.55270 1.10070I
u = 1.028180 + 0.401751I
a = 0.842937 + 0.402129I
b = 0.466581 0.606665I
3.20449 4.27323I 1.36721 + 6.77417I
u = 1.028180 0.401751I
a = 0.842937 0.402129I
b = 0.466581 + 0.606665I
3.20449 + 4.27323I 1.36721 6.77417I
u = 1.132760 + 0.119465I
a = 0.399911 + 0.146187I
b = 0.444802 0.471118I
3.11947 + 0.51181I 0.345493 + 0.472617I
u = 1.132760 0.119465I
a = 0.399911 0.146187I
b = 0.444802 + 0.471118I
3.11947 0.51181I 0.345493 0.472617I
u = 0.068539 + 0.776104I
a = 2.94508 0.05064I
b = 1.42888 0.10362I
5.79751 2.66305I 8.58849 + 2.68063I
u = 0.068539 0.776104I
a = 2.94508 + 0.05064I
b = 1.42888 + 0.10362I
5.79751 + 2.66305I 8.58849 2.68063I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.701128
a = 0.723697
b = 1.54174
9.07206 6.92100
u = 1.38081
a = 0.782809
b = 0.202634
3.22160 2.65910
u = 1.43515
a = 1.63913
b = 1.62828
3.96458 1.96340
u = 0.093206 + 0.505933I
a = 0.909549 0.188312I
b = 0.279075 0.365424I
0.272367 + 1.017390I 4.41879 6.56996I
u = 0.093206 0.505933I
a = 0.909549 + 0.188312I
b = 0.279075 + 0.365424I
0.272367 1.017390I 4.41879 + 6.56996I
u = 0.462517
a = 1.41263
b = 0.790251
1.60060 3.53340
u = 1.60836
a = 0.0902962
b = 1.36994
1.00091 6.04390
u = 0.389158
a = 3.32064
b = 1.64070
10.0949 1.45710
u = 0.327289
a = 3.18758
b = 0.436653
2.27386 5.71450
u = 1.70507 + 0.18041I
a = 1.29573 + 0.99047I
b = 1.58969 0.26870I
5.77830 10.34990I 4.51654 + 4.83744I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.70507 0.18041I
a = 1.29573 0.99047I
b = 1.58969 + 0.26870I
5.77830 + 10.34990I 4.51654 4.83744I
u = 1.74296 + 0.07415I
a = 1.029860 0.595198I
b = 1.47829 + 0.32375I
7.48038 + 3.07161I 3.06454 1.05246I
u = 1.74296 0.07415I
a = 1.029860 + 0.595198I
b = 1.47829 0.32375I
7.48038 3.07161I 3.06454 + 1.05246I
u = 1.74801 + 0.11240I
a = 0.591464 + 0.471611I
b = 0.634607 0.775759I
13.1108 + 6.4432I 1.45116 4.64591I
u = 1.74801 0.11240I
a = 0.591464 0.471611I
b = 0.634607 + 0.775759I
13.1108 6.4432I 1.45116 + 4.64591I
u = 1.76409 + 0.02868I
a = 0.245519 + 0.313706I
b = 0.451661 0.831495I
13.66050 1.13182I 0.424228 0.165787I
u = 1.76409 0.02868I
a = 0.245519 0.313706I
b = 0.451661 + 0.831495I
13.66050 + 1.13182I 0.424228 + 0.165787I
7
II. I
u
2
= h2b 2a + u, 2a
2
2au 2a + u 1, u
2
2i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
2
a
4
=
u
u
a
5
=
0
u
a
10
=
1
0
a
12
=
a
a
1
2
u
a
1
=
1
2
u
a
1
2
u
a
2
=
1
2
u
a +
1
2
u
a
7
=
1
2
au a +
1
2
u +
1
2
a +
1
2
u 1
a
11
=
1
2
au
1
2
a +
1
2
u 1
a
6
=
1
2
u
a
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
8
c
9
(u
2
2)
2
c
6
, c
7
(u
2
u 1)
2
c
10
, c
11
, c
12
(u
2
+ u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
8
c
9
(y 2)
4
c
6
, c
7
, c
10
c
11
, c
12
(y
2
3y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.0890728
b = 0.618034
2.30291 8.00000
u = 1.41421
a = 2.32514
b = 1.61803
5.59278 8.00000
u = 1.41421
a = 0.910927
b = 1.61803
5.59278 8.00000
u = 1.41421
a = 1.32514
b = 0.618034
2.30291 8.00000
11
III. I
v
1
= ha, b + v + 1, v
2
+ v 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
9
=
1
0
a
4
=
v
0
a
5
=
v
0
a
10
=
1
0
a
12
=
0
v 1
a
1
=
v + 1
v 1
a
2
=
2v + 1
v 1
a
7
=
1
v 2
a
11
=
v 1
v + 2
a
6
=
v 1
v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
8
c
9
u
2
c
5
(u + 1)
2
c
6
, c
7
, c
10
u
2
+ u 1
c
11
, c
12
u
2
u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
8
c
9
y
2
c
6
, c
7
, c
10
c
11
, c
12
y
2
3y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.618034
a = 0
b = 1.61803
10.5276 18.0000
v = 1.61803
a = 0
b = 0.618034
2.63189 18.0000
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
27
+ 7u
26
+ ··· + 73u + 1)
c
2
((u 1)
2
)(u + 1)
4
(u
27
+ 3u
26
+ ··· + 7u + 1)
c
3
, c
8
, c
9
u
2
(u
2
2)
2
(u
27
+ u
26
+ ··· 4u 4)
c
4
u
2
(u
2
2)
2
(u
27
3u
26
+ ··· + 612u + 220)
c
5
((u 1)
4
)(u + 1)
2
(u
27
+ 3u
26
+ ··· + 7u + 1)
c
6
, c
7
((u
2
u 1)
2
)(u
2
+ u 1)(u
27
2u
26
+ ··· 6u + 1)
c
10
((u
2
+ u 1)
3
)(u
27
2u
26
+ ··· 20u 1)
c
11
, c
12
(u
2
u 1)(u
2
+ u 1)
2
(u
27
2u
26
+ ··· 6u + 1)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
27
+ 33y
26
+ ··· + 4113y 1)
c
2
, c
5
((y 1)
6
)(y
27
7y
26
+ ··· + 73y 1)
c
3
, c
8
, c
9
y
2
(y 2)
4
(y
27
37y
26
+ ··· + 336y 16)
c
4
y
2
(y 2)
4
(y
27
97y
26
+ ··· + 1370704y 48400)
c
6
, c
7
, c
11
c
12
((y
2
3y + 1)
3
)(y
27
30y
26
+ ··· + 32y 1)
c
10
((y
2
3y + 1)
3
)(y
27
+ 42y
26
+ ··· + 160y 1)
17