12n
0468
(K12n
0468
)
A knot diagram
1
Linearized knot diagam
3 6 9 10 2 11 12 5 4 6 7 10
Solving Sequence
6,10
11 7
3,12
2 1 5 4 9 8
c
10
c
6
c
11
c
2
c
1
c
5
c
4
c
9
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h50017u
23
192212u
22
+ ··· + 807182b 1440535,
887697u
23
+ 1683868u
22
+ ··· + 403591a + 7501915, u
24
2u
23
+ ··· 14u + 1i
I
u
2
= hb, a u 1, u
2
+ u 1i
I
u
3
= hb
2
2, a + u 1, u
2
u 1i
* 3 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.00 × 10
4
u
23
1.92 × 10
5
u
22
+ · · · + 8.07 × 10
5
b 1.44 × 10
6
, 8.88 ×
10
5
u
23
+1.68×10
6
u
22
+· · ·+4.04×10
5
a+7.50×10
6
, u
24
2u
23
+· · ·14u+1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
3
=
2.19950u
23
4.17221u
22
+ ··· + 80.3744u 18.5879
0.0619650u
23
+ 0.238127u
22
+ ··· 4.26658u + 1.78465
a
12
=
u
2
+ 1
u
4
2u
2
a
2
=
2.19950u
23
4.17221u
22
+ ··· + 80.3744u 18.5879
0.155552u
23
+ 0.463063u
22
+ ··· 5.24199u + 2.01143
a
1
=
u
4
3u
2
+ 1
u
4
2u
2
a
5
=
1.28329u
23
+ 2.79375u
22
+ ··· 48.2229u + 16.0757
0.0668610u
23
0.539826u
22
+ ··· + 6.83004u 2.15414
a
4
=
1.21643u
23
+ 2.25393u
22
+ ··· 41.3929u + 13.9216
0.0668610u
23
0.539826u
22
+ ··· + 6.83004u 2.15414
a
9
=
2.01143u
23
+ 3.86730u
22
+ ··· 83.0096u + 22.9180
0.557673u
23
0.761132u
22
+ ··· + 14.1472u 3.26037
a
8
=
u
3
2u
u
5
+ 3u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
456499
403591
u
23
+
452261
403591
u
22
+ ···
8480209
403591
u
5152499
403591
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 5u
23
+ ··· + 53u + 1
c
2
, c
5
u
24
+ 3u
23
+ ··· + 7u + 1
c
3
, c
4
, c
9
u
24
u
23
+ ··· 4u 4
c
6
, c
7
, c
10
c
11
u
24
+ 2u
23
+ ··· + 14u + 1
c
8
u
24
+ 3u
23
+ ··· 4u 4
c
12
u
24
+ 20u
23
+ ··· 7204u + 113
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
+ 35y
23
+ ··· 2365y + 1
c
2
, c
5
y
24
5y
23
+ ··· 53y + 1
c
3
, c
4
, c
9
y
24
19y
23
+ ··· 144y + 16
c
6
, c
7
, c
10
c
11
y
24
36y
23
+ ··· 124y + 1
c
8
y
24
+ 41y
23
+ ··· 272y + 16
c
12
y
24
108y
23
+ ··· 36653012y + 12769
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.964868
a = 1.34648
b = 0.375511
3.09721 1.73870
u = 0.789115
a = 0.656714
b = 1.73162
4.32235 2.54540
u = 1.195640 + 0.370602I
a = 0.572553 0.900506I
b = 0.06466 1.81298I
3.39573 7.66310I 0.37088 + 5.98262I
u = 1.195640 0.370602I
a = 0.572553 + 0.900506I
b = 0.06466 + 1.81298I
3.39573 + 7.66310I 0.37088 5.98262I
u = 0.394218 + 0.611999I
a = 0.26532 1.46494I
b = 0.096993 0.945243I
1.63157 + 4.24750I 3.56364 6.51398I
u = 0.394218 0.611999I
a = 0.26532 + 1.46494I
b = 0.096993 + 0.945243I
1.63157 4.24750I 3.56364 + 6.51398I
u = 1.300810 + 0.139494I
a = 0.624407 + 0.553888I
b = 0.341664 + 0.962592I
4.01026 1.38355I 0.744304 + 1.165315I
u = 1.300810 0.139494I
a = 0.624407 0.553888I
b = 0.341664 0.962592I
4.01026 + 1.38355I 0.744304 1.165315I
u = 0.567026 + 0.327854I
a = 0.027057 + 0.847883I
b = 0.318541 + 0.587410I
1.105110 0.832342I 4.13142 + 2.88592I
u = 0.567026 0.327854I
a = 0.027057 0.847883I
b = 0.318541 0.587410I
1.105110 + 0.832342I 4.13142 2.88592I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.330220 + 0.199162I
a = 0.460296 + 0.718151I
b = 0.01595 + 1.48977I
7.39054 + 2.83153I 3.91368 2.93748I
u = 1.330220 0.199162I
a = 0.460296 0.718151I
b = 0.01595 1.48977I
7.39054 2.83153I 3.91368 + 2.93748I
u = 0.394897 + 0.488286I
a = 1.365600 0.212541I
b = 0.148526 0.193691I
1.60715 0.53576I 3.93456 0.12149I
u = 0.394897 0.488286I
a = 1.365600 + 0.212541I
b = 0.148526 + 0.193691I
1.60715 + 0.53576I 3.93456 + 0.12149I
u = 1.60569
a = 0.0892641
b = 1.28709
3.92860 2.04700
u = 0.322044
a = 2.66696
b = 0.304688
1.11472 13.2200
u = 1.68408
a = 0.772565
b = 0.260162
6.28088 2.91920
u = 1.79002 + 0.10661I
a = 0.653626 0.552899I
b = 0.45171 2.56882I
14.1732 + 9.8238I 0. 4.62190I
u = 1.79002 0.10661I
a = 0.653626 + 0.552899I
b = 0.45171 + 2.56882I
14.1732 9.8238I 0. + 4.62190I
u = 1.82183 + 0.02838I
a = 0.439745 + 0.654915I
b = 0.79204 + 2.27718I
15.6632 + 2.1276I 1.47628 0.94453I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.82183 0.02838I
a = 0.439745 0.654915I
b = 0.79204 2.27718I
15.6632 2.1276I 1.47628 + 0.94453I
u = 1.82860 + 0.05006I
a = 0.568562 + 0.623923I
b = 0.63662 + 2.42066I
19.1541 4.0381I 3.21227 + 2.25463I
u = 1.82860 0.05006I
a = 0.568562 0.623923I
b = 0.63662 2.42066I
19.1541 + 4.0381I 3.21227 2.25463I
u = 0.0970532
a = 10.7589
b = 1.32951
6.54674 14.1170
7
II. I
u
2
= hb, a u 1, u
2
+ u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
7
=
u
u + 1
a
3
=
u + 1
0
a
12
=
u
u
a
2
=
u + 1
u
a
1
=
0
u
a
5
=
u + 1
0
a
4
=
u + 1
0
a
9
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
8
c
9
u
2
c
5
(u + 1)
2
c
6
, c
7
u
2
u 1
c
10
, c
11
, c
12
u
2
+ u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
8
c
9
y
2
c
6
, c
7
, c
10
c
11
, c
12
y
2
3y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0
0.657974 6.00000
u = 1.61803
a = 0.618034
b = 0
7.23771 6.00000
11
III. I
u
3
= hb
2
2, a + u 1, u
2
u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u 1
a
7
=
u
u 1
a
3
=
u + 1
b
a
12
=
u
u
a
2
=
u + 1
b + u
a
1
=
0
u
a
5
=
u 1
b
a
4
=
b + u 1
b
a
9
=
bu b 1
2
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
8
c
9
(u
2
2)
2
c
6
, c
7
, c
12
(u
2
+ u 1)
2
c
10
, c
11
(u
2
u 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
8
c
9
(y 2)
4
c
6
, c
7
, c
10
c
11
, c
12
(y
2
3y + 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 1.41421
5.59278 4.00000
u = 0.618034
a = 1.61803
b = 1.41421
5.59278 4.00000
u = 1.61803
a = 0.618034
b = 1.41421
2.30291 4.00000
u = 1.61803
a = 0.618034
b = 1.41421
2.30291 4.00000
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
24
+ 5u
23
+ ··· + 53u + 1)
c
2
((u 1)
2
)(u + 1)
4
(u
24
+ 3u
23
+ ··· + 7u + 1)
c
3
, c
4
, c
9
u
2
(u
2
2)
2
(u
24
u
23
+ ··· 4u 4)
c
5
((u 1)
4
)(u + 1)
2
(u
24
+ 3u
23
+ ··· + 7u + 1)
c
6
, c
7
(u
2
u 1)(u
2
+ u 1)
2
(u
24
+ 2u
23
+ ··· + 14u + 1)
c
8
u
2
(u
2
2)
2
(u
24
+ 3u
23
+ ··· 4u 4)
c
10
, c
11
((u
2
u 1)
2
)(u
2
+ u 1)(u
24
+ 2u
23
+ ··· + 14u + 1)
c
12
((u
2
+ u 1)
3
)(u
24
+ 20u
23
+ ··· 7204u + 113)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
24
+ 35y
23
+ ··· 2365y + 1)
c
2
, c
5
((y 1)
6
)(y
24
5y
23
+ ··· 53y + 1)
c
3
, c
4
, c
9
y
2
(y 2)
4
(y
24
19y
23
+ ··· 144y + 16)
c
6
, c
7
, c
10
c
11
((y
2
3y + 1)
3
)(y
24
36y
23
+ ··· 124y + 1)
c
8
y
2
(y 2)
4
(y
24
+ 41y
23
+ ··· 272y + 16)
c
12
((y
2
3y + 1)
3
)(y
24
108y
23
+ ··· 3.66530 × 10
7
y + 12769)
17