11a
6
(K11a
6
)
A knot diagram
1
Linearized knot diagam
5 1 8 2 3 11 9 4 6 7 10
Solving Sequence
6,11 3,7
5 10 1 2 4 9 8
c
6
c
5
c
10
c
11
c
2
c
4
c
9
c
7
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
3
+ b u, u
13
u
12
4u
11
3u
10
7u
9
5u
8
6u
7
4u
6
2u
5
2u
4
2u
3
u
2
+ a 2u 1,
u
17
+ u
16
+ ··· + u + 1i
I
u
2
= h−u
53
2u
52
+ ··· + b 1, u
52
2u
51
+ ··· + a 3, u
54
+ 2u
53
+ ··· + u + 1i
I
u
3
= hb + u + 1, a + 1, u
2
+ u + 1i
I
u
4
= hb u, a u 1, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
3
+ b u, u
13
u
12
+ · · · + a 1, u
17
+ u
16
+ · · · + u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
13
+ u
12
+ ··· + 2u + 1
u
3
+ u
a
7
=
1
u
2
a
5
=
u
16
u
15
+ ··· u + 1
u
6
2u
4
u
2
a
10
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
2
=
u
13
+ u
12
+ ··· + 2u + 1
u
7
u
5
+ u
a
4
=
u
16
u
15
+ ··· u
3
+ 1
u
8
2u
6
2u
4
a
9
=
u
3
u
3
+ u
a
8
=
u
8
+ u
6
+ u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
8
=
u
8
+ u
6
+ u
4
+ 1
u
8
+ 2u
6
+ 2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
16
6u
15
18u
14
22u
13
40u
12
46u
11
56u
10
54u
9
54u
8
44u
7
44u
6
28u
5
26u
4
22u
3
12u
2
10u 8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
10
u
17
+ u
16
+ ··· + u + 1
c
2
, c
11
u
17
+ 9u
16
+ ··· 3u 1
c
3
, c
8
u
17
5u
16
+ ··· 8u + 4
c
5
, c
9
u
17
u
16
+ ··· u + 2
c
7
u
17
+ 5u
16
+ ··· + 56u
2
+ 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
y
17
+ 9y
16
+ ··· 3y 1
c
2
, c
11
y
17
+ y
16
+ ··· + 5y 1
c
3
, c
8
y
17
5y
16
+ ··· 56y
2
16
c
5
, c
9
y
17
7y
16
+ ··· + y 4
c
7
y
17
+ 7y
16
+ ··· 1792y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.364031 + 1.042940I
a = 2.23442 + 1.04009I
b = 0.775626 + 0.323135I
3.22508 + 4.12748I 8.88917 5.53460I
u = 0.364031 1.042940I
a = 2.23442 1.04009I
b = 0.775626 0.323135I
3.22508 4.12748I 8.88917 + 5.53460I
u = 0.783861 + 0.397949I
a = 0.183240 0.678603I
b = 0.893091 + 1.068470I
2.83523 + 5.37992I 0.58832 3.10862I
u = 0.783861 0.397949I
a = 0.183240 + 0.678603I
b = 0.893091 1.068470I
2.83523 5.37992I 0.58832 + 3.10862I
u = 0.228107 + 1.129710I
a = 1.006760 + 0.533745I
b = 0.633379 0.135717I
6.66052 + 0.33441I 12.27972 + 0.14725I
u = 0.228107 1.129710I
a = 1.006760 0.533745I
b = 0.633379 + 0.135717I
6.66052 0.33441I 12.27972 0.14725I
u = 0.701375 + 0.463501I
a = 0.486517 0.757070I
b = 0.594363 + 1.047950I
3.82884 + 0.36538I 2.43059 2.03934I
u = 0.701375 0.463501I
a = 0.486517 + 0.757070I
b = 0.594363 1.047950I
3.82884 0.36538I 2.43059 + 2.03934I
u = 0.572214 + 1.088100I
a = 2.74846 1.45002I
b = 1.27288 + 0.86865I
0.06925 + 9.48553I 4.16847 7.65622I
u = 0.572214 1.088100I
a = 2.74846 + 1.45002I
b = 1.27288 0.86865I
0.06925 9.48553I 4.16847 + 7.65622I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.451021 + 1.148490I
a = 2.21759 0.36414I
b = 1.241950 + 0.334481I
8.03366 8.05681I 11.19202 + 7.52466I
u = 0.451021 1.148490I
a = 2.21759 + 0.36414I
b = 1.241950 0.334481I
8.03366 + 8.05681I 11.19202 7.52466I
u = 0.601205 + 1.123530I
a = 2.35978 1.49796I
b = 1.45822 + 0.92357I
1.4738 15.8440I 5.36436 + 10.86165I
u = 0.601205 1.123530I
a = 2.35978 + 1.49796I
b = 1.45822 0.92357I
1.4738 + 15.8440I 5.36436 10.86165I
u = 0.237306 + 0.655876I
a = 0.689506 + 1.196060I
b = 0.055578 + 0.484541I
0.38141 + 1.45461I 4.03529 4.09951I
u = 0.237306 0.655876I
a = 0.689506 1.196060I
b = 0.055578 0.484541I
0.38141 1.45461I 4.03529 + 4.09951I
u = 0.621462
a = 0.188062
b = 0.861480
1.88169 4.17970
6
II.
I
u
2
= h−u
53
2u
52
+· · ·+b1, u
52
2u
51
+· · ·+a3, u
54
+2u
53
+· · ·+u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u
52
+ 2u
51
+ ··· + 3u + 3
u
53
+ 2u
52
+ ··· + 3u + 1
a
7
=
1
u
2
a
5
=
u
52
+ u
51
+ ··· + u + 3
u
53
+ 2u
52
+ ··· + 2u + 1
a
10
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
2
=
u
53
+ u
52
+ ··· + 3u + 4
u
53
+ 4u
52
+ ··· + 4u + 3
a
4
=
2u
53
u
52
+ ··· + u + 3
u
53
+ 4u
52
+ ··· + 3u + 3
a
9
=
u
3
u
3
+ u
a
8
=
u
8
+ u
6
+ u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
8
=
u
8
+ u
6
+ u
4
+ 1
u
8
+ 2u
6
+ 2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
53
8u
52
+ ··· 15u 5
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
10
u
54
+ 2u
53
+ ··· + u + 1
c
2
, c
11
u
54
+ 24u
53
+ ··· + 5u + 1
c
3
, c
8
(u
27
+ 2u
26
+ ··· + 3u + 2)
2
c
5
, c
9
u
54
2u
53
+ ··· 145u + 17
c
7
(u
27
+ 10u
26
+ ··· + 25u + 4)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
y
54
+ 24y
53
+ ··· + 5y + 1
c
2
, c
11
y
54
+ 12y
53
+ ··· + 53y + 1
c
3
, c
8
(y
27
10y
26
+ ··· + 25y 4)
2
c
5
, c
9
y
54
+ 38y
52
+ ··· 4637y + 289
c
7
(y
27
+ 14y
26
+ ··· 95y 16)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.349223 + 0.956682I
a = 1.49999 0.14653I
b = 0.583952 1.234060I
1.01872 3.73043I 9.17515 + 3.57270I
u = 0.349223 0.956682I
a = 1.49999 + 0.14653I
b = 0.583952 + 1.234060I
1.01872 + 3.73043I 9.17515 3.57270I
u = 0.748850 + 0.603065I
a = 0.217497 + 0.802869I
b = 1.22625 0.91458I
1.90449 + 7.58447I 1.82775 8.11380I
u = 0.748850 0.603065I
a = 0.217497 0.802869I
b = 1.22625 + 0.91458I
1.90449 7.58447I 1.82775 + 8.11380I
u = 0.239448 + 0.923216I
a = 0.896353 + 0.856395I
b = 0.055765 + 1.171120I
0.538859 + 1.164110I 6.09920 3.89817I
u = 0.239448 0.923216I
a = 0.896353 0.856395I
b = 0.055765 1.171120I
0.538859 1.164110I 6.09920 + 3.89817I
u = 0.227574 + 1.026590I
a = 2.62355 1.10867I
b = 1.066100 0.705684I
2.23363 2.56106I 7.40701 + 2.25118I
u = 0.227574 1.026590I
a = 2.62355 + 1.10867I
b = 1.066100 + 0.705684I
2.23363 + 2.56106I 7.40701 2.25118I
u = 0.622213 + 0.701611I
a = 0.125307 + 0.872732I
b = 0.359087 + 0.295131I
0.538859 + 1.164110I 6.09920 3.89817I
u = 0.622213 0.701611I
a = 0.125307 0.872732I
b = 0.359087 0.295131I
0.538859 1.164110I 6.09920 + 3.89817I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.725685 + 0.567873I
a = 0.020644 0.712194I
b = 0.639257 + 1.031450I
3.74831 + 2.63920I 1.74271 3.37289I
u = 0.725685 0.567873I
a = 0.020644 + 0.712194I
b = 0.639257 1.031450I
3.74831 2.63920I 1.74271 + 3.37289I
u = 0.626309 + 0.880271I
a = 0.459060 0.105789I
b = 0.567055 0.431109I
1.01872 + 3.73043I 9.17515 3.57270I
u = 0.626309 0.880271I
a = 0.459060 + 0.105789I
b = 0.567055 + 0.431109I
1.01872 3.73043I 9.17515 + 3.57270I
u = 0.312561 + 0.860769I
a = 1.090150 + 0.590870I
b = 0.301084 + 0.372364I
0.36265 + 1.51655I 2.55288 3.58996I
u = 0.312561 0.860769I
a = 1.090150 0.590870I
b = 0.301084 0.372364I
0.36265 1.51655I 2.55288 + 3.58996I
u = 0.809979 + 0.388169I
a = 0.387729 + 0.682238I
b = 1.40169 0.91902I
0.71725 + 10.56860I 2.49476 7.09212I
u = 0.809979 0.388169I
a = 0.387729 0.682238I
b = 1.40169 + 0.91902I
0.71725 10.56860I 2.49476 + 7.09212I
u = 0.155842 + 1.113420I
a = 1.28841 + 0.90918I
b = 0.921991 + 0.867194I
2.12405 + 3.04478I 5.96953 + 0.I
u = 0.155842 1.113420I
a = 1.28841 0.90918I
b = 0.921991 0.867194I
2.12405 3.04478I 5.96953 + 0.I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.708611 + 0.447215I
a = 0.247473 0.847336I
b = 0.405789 + 1.281900I
3.74831 + 2.63920I 1.74271 3.37289I
u = 0.708611 0.447215I
a = 0.247473 + 0.847336I
b = 0.405789 1.281900I
3.74831 2.63920I 1.74271 + 3.37289I
u = 0.151780 + 1.152760I
a = 2.17540 0.88692I
b = 1.38571 0.79831I
4.41486 + 8.03203I 0
u = 0.151780 1.152760I
a = 2.17540 + 0.88692I
b = 1.38571 + 0.79831I
4.41486 8.03203I 0
u = 0.511133 + 1.056250I
a = 0.62752 1.87534I
b = 0.480147 0.104188I
2.23363 + 2.56106I 0
u = 0.511133 1.056250I
a = 0.62752 + 1.87534I
b = 0.480147 + 0.104188I
2.23363 2.56106I 0
u = 0.751654 + 0.335841I
a = 0.096897 + 0.981834I
b = 0.419969 0.185771I
2.12405 + 3.04478I 5.96953 2.28005I
u = 0.751654 0.335841I
a = 0.096897 0.981834I
b = 0.419969 + 0.185771I
2.12405 3.04478I 5.96953 + 2.28005I
u = 0.664646 + 0.482177I
a = 0.369465 + 1.094390I
b = 1.04005 1.12862I
2.43288 2.48370I 0.17393 + 1.70527I
u = 0.664646 0.482177I
a = 0.369465 1.094390I
b = 1.04005 + 1.12862I
2.43288 + 2.48370I 0.17393 1.70527I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.709728 + 0.409816I
a = 0.797906 + 0.871398I
b = 1.19348 0.92713I
2.05766 4.56252I 0.66909 + 3.14948I
u = 0.709728 0.409816I
a = 0.797906 0.871398I
b = 1.19348 + 0.92713I
2.05766 + 4.56252I 0.66909 3.14948I
u = 0.645440 + 0.992497I
a = 0.430435 + 1.133340I
b = 1.13054 + 0.89132I
0.74861 2.30237I 0
u = 0.645440 0.992497I
a = 0.430435 1.133340I
b = 1.13054 0.89132I
0.74861 + 2.30237I 0
u = 0.616080 + 1.011230I
a = 1.033840 0.596746I
b = 0.494676 1.009080I
2.43288 + 2.48370I 0
u = 0.616080 1.011230I
a = 1.033840 + 0.596746I
b = 0.494676 + 1.009080I
2.43288 2.48370I 0
u = 0.425486 + 1.115580I
a = 1.66016 + 0.73542I
b = 1.086700 0.177414I
4.91302 3.80494I 0
u = 0.425486 1.115580I
a = 1.66016 0.73542I
b = 1.086700 + 0.177414I
4.91302 + 3.80494I 0
u = 0.564050 + 1.052370I
a = 0.555172 + 1.140900I
b = 0.99305 + 1.25524I
0.74861 2.30237I 0
u = 0.564050 1.052370I
a = 0.555172 1.140900I
b = 0.99305 1.25524I
0.74861 + 2.30237I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.578440 + 1.064250I
a = 2.17032 + 0.76831I
b = 0.709634 0.960278I
2.05766 + 4.56252I 0
u = 0.578440 1.064250I
a = 2.17032 0.76831I
b = 0.709634 + 0.960278I
2.05766 4.56252I 0
u = 0.387985 + 1.148030I
a = 1.72235 1.44568I
b = 1.087670 0.153410I
8.45612 0
u = 0.387985 1.148030I
a = 1.72235 + 1.44568I
b = 1.087670 + 0.153410I
8.45612 0
u = 0.578445 + 1.073080I
a = 1.171830 0.616273I
b = 0.35175 1.39829I
1.90449 7.58447I 0
u = 0.578445 1.073080I
a = 1.171830 + 0.616273I
b = 0.35175 + 1.39829I
1.90449 + 7.58447I 0
u = 0.567778 + 1.119960I
a = 0.778236 1.171470I
b = 0.449802 + 0.299411I
4.41486 8.03203I 0
u = 0.567778 1.119960I
a = 0.778236 + 1.171470I
b = 0.449802 0.299411I
4.41486 + 8.03203I 0
u = 0.595230 + 1.111930I
a = 2.04660 + 0.90398I
b = 0.97525 1.09368I
0.71725 10.56860I 0
u = 0.595230 1.111930I
a = 2.04660 0.90398I
b = 0.97525 + 1.09368I
0.71725 + 10.56860I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.721512 + 0.069386I
a = 0.646399 0.423989I
b = 1.086050 0.333117I
4.91302 + 3.80494I 7.92053 4.08050I
u = 0.721512 0.069386I
a = 0.646399 + 0.423989I
b = 1.086050 + 0.333117I
4.91302 3.80494I 7.92053 + 4.08050I
u = 0.347654 + 0.291444I
a = 0.18494 + 1.84096I
b = 0.351655 + 0.475282I
0.36265 + 1.51655I 2.55288 3.58996I
u = 0.347654 0.291444I
a = 0.18494 1.84096I
b = 0.351655 0.475282I
0.36265 1.51655I 2.55288 + 3.58996I
15
III. I
u
3
= hb + u + 1, a + 1, u
2
+ u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
1
u 1
a
7
=
1
u + 1
a
5
=
u
u
a
10
=
u
u + 1
a
1
=
1
0
a
2
=
u 2
u 1
a
4
=
1
u 1
a
9
=
1
u + 1
a
8
=
1
u + 1
a
8
=
1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
11
u
2
+ u + 1
c
3
, c
7
, c
8
u
2
c
4
, c
10
u
2
u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
2
+ y + 1
c
3
, c
7
, c
8
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
19
IV. I
u
4
= hb u, a u 1, u
2
+ u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
u + 1
u
a
7
=
1
u + 1
a
5
=
2
u + 1
a
10
=
u
u + 1
a
1
=
1
0
a
2
=
2u + 1
u
a
4
=
u + 1
u
a
9
=
1
u + 1
a
8
=
1
u + 1
a
8
=
1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
9
, c
11
u
2
+ u + 1
c
3
, c
7
, c
8
u
2
c
4
, c
10
u
2
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
9
c
10
, c
11
y
2
+ y + 1
c
3
, c
7
, c
8
y
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
0 3.00000
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 0.866025I
0 3.00000
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
((u
2
+ u + 1)
2
)(u
17
+ u
16
+ ··· + u + 1)(u
54
+ 2u
53
+ ··· + u + 1)
c
2
, c
11
((u
2
+ u + 1)
2
)(u
17
+ 9u
16
+ ··· 3u 1)(u
54
+ 24u
53
+ ··· + 5u + 1)
c
3
, c
8
u
4
(u
17
5u
16
+ ··· 8u + 4)(u
27
+ 2u
26
+ ··· + 3u + 2)
2
c
4
, c
10
((u
2
u + 1)
2
)(u
17
+ u
16
+ ··· + u + 1)(u
54
+ 2u
53
+ ··· + u + 1)
c
5
, c
9
((u
2
+ u + 1)
2
)(u
17
u
16
+ ··· u + 2)(u
54
2u
53
+ ··· 145u + 17)
c
7
u
4
(u
17
+ 5u
16
+ ··· + 56u
2
+ 16)(u
27
+ 10u
26
+ ··· + 25u + 4)
2
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
((y
2
+ y + 1)
2
)(y
17
+ 9y
16
+ ··· 3y 1)(y
54
+ 24y
53
+ ··· + 5y + 1)
c
2
, c
11
((y
2
+ y + 1)
2
)(y
17
+ y
16
+ ··· + 5y 1)(y
54
+ 12y
53
+ ··· + 53y + 1)
c
3
, c
8
y
4
(y
17
5y
16
+ ··· 56y
2
16)(y
27
10y
26
+ ··· + 25y 4)
2
c
5
, c
9
((y
2
+ y + 1)
2
)(y
17
7y
16
+ ··· + y 4)
· (y
54
+ 38y
52
+ ··· 4637y + 289)
c
7
y
4
(y
17
+ 7y
16
+ ··· 1792y 256)(y
27
+ 14y
26
+ ··· 95y 16)
2
25