12n
0474
(K12n
0474
)
A knot diagram
1
Linearized knot diagam
3 6 10 9 2 11 12 3 4 6 7 8
Solving Sequence
6,10
11 7
4,12
3 2 1 5 9 8
c
10
c
6
c
11
c
3
c
2
c
1
c
5
c
9
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−23u
13
+ 80u
12
+ ··· + 26b 109, 31u
13
92u
12
+ ··· + 78a + 269,
u
14
2u
13
10u
12
+ 20u
11
+ 38u
10
77u
9
66u
8
+ 147u
7
+ 36u
6
140u
5
+ 27u
4
+ 57u
3
26u
2
u + 3i
I
u
2
= hb, a u + 1, u
2
u 1i
I
u
3
= hb + a + u + 1, a
2
+ 2au + 2a + u + 4, u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 20 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−23u
13
+ 80u
12
+ · · · + 26b 109, 31u
13
92u
12
+ · · · + 78a +
269, u
14
2u
13
+ · · · u + 3i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
4
=
0.397436u
13
+ 1.17949u
12
+ ··· 0.858974u 3.44872
0.884615u
13
3.07692u
12
+ ··· 2.34615u + 4.19231
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
0.487179u
13
1.89744u
12
+ ··· 3.20513u + 0.743590
0.884615u
13
3.07692u
12
+ ··· 2.34615u + 4.19231
a
2
=
0.487179u
13
1.89744u
12
+ ··· 3.20513u + 0.743590
0.346154u
13
0.769231u
12
+ ··· + 0.0384615u + 1.42308
a
1
=
u
4
+ 3u
2
1
u
6
+ 4u
4
3u
2
a
5
=
1.10256u
13
+ 2.82051u
12
+ ··· + 4.35897u 2.05128
0.576923u
13
0.615385u
12
+ ··· 0.269231u 0.961538
a
9
=
0.474359u
13
+ 1.29487u
12
+ ··· 1.08974u + 0.512821
0.461538u
13
+ 1.69231u
12
+ ··· + 4.61538u 1.23077
a
8
=
u
3
2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
63
13
u
13
179
13
u
12
466
13
u
11
+ 122u
10
+
977
13
u
9
5058
13
u
8
+
190
13
u
7
+
7016
13
u
6
3311
13
u
5
2929
13
u
4
+
2999
13
u
3
571
13
u
2
+
20
13
u
105
13
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 25u
13
+ ··· + 2882u + 121
c
2
, c
5
u
14
+ 3u
13
+ ··· 22u 11
c
3
, c
4
, c
9
u
14
u
13
+ ··· 8u 4
c
6
, c
7
, c
10
c
11
, c
12
u
14
2u
13
+ ··· u + 3
c
8
u
14
+ u
13
+ ··· 560u 100
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
65y
13
+ ··· 4823786y + 14641
c
2
, c
5
y
14
25y
13
+ ··· 2882y + 121
c
3
, c
4
, c
9
y
14
+ 9y
13
+ ··· 96y + 16
c
6
, c
7
, c
10
c
11
, c
12
y
14
24y
13
+ ··· 157y + 9
c
8
y
14
51y
13
+ ··· 79200y + 10000
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.099960 + 0.007934I
a = 0.373480 + 0.438522I
b = 0.255413 1.041350I
1.42237 + 2.30354I 14.5680 3.7918I
u = 1.099960 0.007934I
a = 0.373480 0.438522I
b = 0.255413 + 1.041350I
1.42237 2.30354I 14.5680 + 3.7918I
u = 0.698450 + 0.454350I
a = 0.59750 1.75057I
b = 0.525011 + 0.607663I
3.03395 1.06008I 15.9574 + 4.7668I
u = 0.698450 0.454350I
a = 0.59750 + 1.75057I
b = 0.525011 0.607663I
3.03395 + 1.06008I 15.9574 4.7668I
u = 0.374314 + 0.322623I
a = 1.30508 + 1.63203I
b = 0.001324 1.295280I
3.32563 1.11189I 8.52416 + 6.18288I
u = 0.374314 0.322623I
a = 1.30508 1.63203I
b = 0.001324 + 1.295280I
3.32563 + 1.11189I 8.52416 6.18288I
u = 1.45521 + 0.41134I
a = 0.39517 1.54570I
b = 0.742220 + 1.181770I
10.11530 + 4.52944I 16.6083 3.1417I
u = 1.45521 0.41134I
a = 0.39517 + 1.54570I
b = 0.742220 1.181770I
10.11530 4.52944I 16.6083 + 3.1417I
u = 0.298678
a = 0.459084
b = 0.324104
0.507849 19.4340
u = 1.73659 + 0.13204I
a = 0.081098 0.265527I
b = 0.786012 + 0.736054I
11.60050 + 1.36524I 17.2554 2.6511I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.73659 0.13204I
a = 0.081098 + 0.265527I
b = 0.786012 0.736054I
11.60050 1.36524I 17.2554 + 2.6511I
u = 1.88375 + 0.14746I
a = 0.37986 1.43767I
b = 0.67581 + 1.59079I
17.0667 7.6448I 16.3310 + 2.7970I
u = 1.88375 0.14746I
a = 0.37986 + 1.43767I
b = 0.67581 1.59079I
17.0667 + 7.6448I 16.3310 2.7970I
u = 1.97719
a = 0.337623
b = 1.47076
12.0675 18.0770
6
II. I
u
2
= hb, a u + 1, u
2
u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
7
=
u
u 1
a
4
=
u 1
0
a
12
=
u
u
a
3
=
u 1
0
a
2
=
u 1
u
a
1
=
0
u
a
5
=
u 1
0
a
9
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
4
, c
8
c
9
u
2
c
5
(u + 1)
2
c
6
, c
7
u
2
+ u 1
c
10
, c
11
, c
12
u
2
u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
2
c
3
, c
4
, c
8
c
9
y
2
c
6
, c
7
, c
10
c
11
, c
12
y
2
3y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0
2.63189 14.0000
u = 1.61803
a = 0.618034
b = 0
10.5276 14.0000
10
III. I
u
3
= hb + a + u + 1, a
2
+ 2au + 2a + u + 4, u
2
+ u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
7
=
u
u + 1
a
4
=
a
a u 1
a
12
=
u
u
a
3
=
u 1
a u 1
a
2
=
u 1
a 1
a
1
=
0
u
a
5
=
u + 1
a + u + 1
a
9
=
au a u 3
2
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
4
c
2
(u + 1)
4
c
3
, c
4
, c
8
c
9
(u
2
+ 2)
2
c
6
, c
7
(u
2
u 1)
2
c
10
, c
11
, c
12
(u
2
+ u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
4
c
3
, c
4
, c
8
c
9
(y + 2)
4
c
6
, c
7
, c
10
c
11
, c
12
(y
2
3y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803 + 1.41421I
b = 1.414210I
2.30291 16.0000
u = 0.618034
a = 1.61803 1.41421I
b = 1.414210I
2.30291 16.0000
u = 1.61803
a = 0.61803 + 1.41421I
b = 1.414210I
5.59278 16.0000
u = 1.61803
a = 0.61803 1.41421I
b = 1.414210I
5.59278 16.0000
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
14
+ 25u
13
+ ··· + 2882u + 121)
c
2
((u 1)
2
)(u + 1)
4
(u
14
+ 3u
13
+ ··· 22u 11)
c
3
, c
4
, c
9
u
2
(u
2
+ 2)
2
(u
14
u
13
+ ··· 8u 4)
c
5
((u 1)
4
)(u + 1)
2
(u
14
+ 3u
13
+ ··· 22u 11)
c
6
, c
7
((u
2
u 1)
2
)(u
2
+ u 1)(u
14
2u
13
+ ··· u + 3)
c
8
u
2
(u
2
+ 2)
2
(u
14
+ u
13
+ ··· 560u 100)
c
10
, c
11
, c
12
(u
2
u 1)(u
2
+ u 1)
2
(u
14
2u
13
+ ··· u + 3)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
14
65y
13
+ ··· 4823786y + 14641)
c
2
, c
5
((y 1)
6
)(y
14
25y
13
+ ··· 2882y + 121)
c
3
, c
4
, c
9
y
2
(y + 2)
4
(y
14
+ 9y
13
+ ··· 96y + 16)
c
6
, c
7
, c
10
c
11
, c
12
((y
2
3y + 1)
3
)(y
14
24y
13
+ ··· 157y + 9)
c
8
y
2
(y + 2)
4
(y
14
51y
13
+ ··· 79200y + 10000)
16