12n
0477
(K12n
0477
)
A knot diagram
1
Linearized knot diagam
3 6 10 9 2 12 11 3 4 6 7 8
Solving Sequence
6,12 3,7
2 1 5 11 8 10 4 9
c
6
c
2
c
1
c
5
c
11
c
7
c
10
c
3
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−2225017u
29
+ 4505754u
28
+ ··· + 4816957b 1955093,
2648086u
29
9433003u
28
+ ··· + 28901742a + 37209631, u
30
2u
29
+ ··· + 5u 3i
I
u
2
= hb 1, 2u
2
a + a
2
2au + 4u
2
4a + 3u + 7, u
3
+ u
2
+ 2u + 1i
I
u
3
= hb + 1, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
* 3 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.23 × 10
6
u
29
+ 4.51 × 10
6
u
28
+ · · · + 4.82 × 10
6
b 1.96 × 10
6
, 2.65 ×
10
6
u
29
9.43×10
6
u
28
+· · ·+2.89×10
7
a+3.72×10
7
, u
30
2u
29
+· · ·+5u 3i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
0.0916238u
29
+ 0.326382u
28
+ ··· 0.0897393u 1.28745
0.461913u
29
0.935394u
28
+ ··· + 0.0723297u + 0.405877
a
7
=
1
u
2
a
2
=
0.553537u
29
0.609012u
28
+ ··· 0.0174096u 0.881576
0.461913u
29
0.935394u
28
+ ··· + 0.0723297u + 0.405877
a
1
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
5
=
0.847386u
29
1.24384u
28
+ ··· 1.07511u + 1.57925
0.551237u
29
1.21563u
28
+ ··· 1.81025u + 0.917412
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
3
+ 2u
u
3
+ u
a
4
=
0.0573861u
29
+ 0.274952u
28
+ ··· + 0.731599u 2.38174
0.0837160u
29
0.147522u
28
+ ··· + 1.77910u 0.712657
a
9
=
0.348620u
29
1.11181u
28
+ ··· 3.98425u + 2.17901
0.0392597u
29
0.428436u
28
+ ··· 1.44021u + 0.962791
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4602334
4816957
u
29
+
5525451
4816957
u
28
+ ···
80618534
4816957
u
73845258
4816957
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 42u
29
+ ··· + 4660u + 289
c
2
, c
5
u
30
+ 4u
29
+ ··· + 28u 17
c
3
, c
4
, c
9
u
30
u
29
+ ··· + 16u + 8
c
6
, c
7
, c
11
u
30
+ 2u
29
+ ··· 5u 3
c
8
u
30
+ u
29
+ ··· 48u + 488
c
10
, c
12
u
30
2u
29
+ ··· 17u 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
98y
29
+ ··· 20560756y + 83521
c
2
, c
5
y
30
42y
29
+ ··· 4660y + 289
c
3
, c
4
, c
9
y
30
+ 23y
29
+ ··· 2304y
2
+ 64
c
6
, c
7
, c
11
y
30
+ 24y
29
+ ··· 121y + 9
c
8
y
30
61y
29
+ ··· + 989312y + 238144
c
10
, c
12
y
30
40y
29
+ ··· 265y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.999114
a = 2.25143
b = 1.90174
15.9829 16.7010
u = 0.966560 + 0.100179I
a = 2.26552 0.36955I
b = 1.79997 + 0.26406I
11.56980 6.42747I 14.4599 + 3.2280I
u = 0.966560 0.100179I
a = 2.26552 + 0.36955I
b = 1.79997 0.26406I
11.56980 + 6.42747I 14.4599 3.2280I
u = 0.067362 + 1.069610I
a = 0.93060 + 1.33467I
b = 1.167500 0.308385I
5.15569 + 0.50722I 9.61314 + 0.41907I
u = 0.067362 1.069610I
a = 0.93060 1.33467I
b = 1.167500 + 0.308385I
5.15569 0.50722I 9.61314 0.41907I
u = 0.293578 + 1.051070I
a = 0.782550 + 1.067670I
b = 1.113160 0.513139I
0.78564 + 2.16545I 13.74695 1.34185I
u = 0.293578 1.051070I
a = 0.782550 1.067670I
b = 1.113160 + 0.513139I
0.78564 2.16545I 13.74695 + 1.34185I
u = 0.151469 + 1.144510I
a = 0.115008 0.375373I
b = 0.123274 + 0.591027I
2.57428 1.65013I 8.15669 + 3.84589I
u = 0.151469 1.144510I
a = 0.115008 + 0.375373I
b = 0.123274 0.591027I
2.57428 + 1.65013I 8.15669 3.84589I
u = 0.809755 + 0.043993I
a = 1.114310 + 0.426209I
b = 0.855875 + 0.695414I
2.25326 + 2.17999I 13.9404 3.4735I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.809755 0.043993I
a = 1.114310 0.426209I
b = 0.855875 0.695414I
2.25326 2.17999I 13.9404 + 3.4735I
u = 0.636663 + 0.315952I
a = 1.41716 + 0.84138I
b = 1.344600 + 0.179052I
2.86347 + 1.34973I 14.1130 4.7512I
u = 0.636663 0.315952I
a = 1.41716 0.84138I
b = 1.344600 0.179052I
2.86347 1.34973I 14.1130 + 4.7512I
u = 0.397857 + 1.242680I
a = 0.883299 + 0.876579I
b = 0.772590 0.869650I
1.43546 6.54686I 9.76473 + 6.27179I
u = 0.397857 1.242680I
a = 0.883299 0.876579I
b = 0.772590 + 0.869650I
1.43546 + 6.54686I 9.76473 6.27179I
u = 0.308606 + 1.287910I
a = 0.045483 + 0.304042I
b = 0.835858 + 0.482328I
1.90752 1.82850I 9.06320 1.31557I
u = 0.308606 1.287910I
a = 0.045483 0.304042I
b = 0.835858 0.482328I
1.90752 + 1.82850I 9.06320 + 1.31557I
u = 0.153332 + 1.323030I
a = 0.841526 0.802993I
b = 0.200009 + 0.363871I
8.24471 + 3.12382I 2.39878 3.89363I
u = 0.153332 1.323030I
a = 0.841526 + 0.802993I
b = 0.200009 0.363871I
8.24471 3.12382I 2.39878 + 3.89363I
u = 0.525666 + 1.225010I
a = 0.922843 0.837941I
b = 1.82392 0.14447I
8.11797 + 1.14335I 11.97314 0.02421I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.525666 1.225010I
a = 0.922843 + 0.837941I
b = 1.82392 + 0.14447I
8.11797 1.14335I 11.97314 + 0.02421I
u = 0.502067 + 1.320010I
a = 0.90661 1.20129I
b = 1.86679 + 0.13017I
11.88350 + 5.33435I 13.75533 3.00902I
u = 0.502067 1.320010I
a = 0.90661 + 1.20129I
b = 1.86679 0.13017I
11.88350 5.33435I 13.75533 + 3.00902I
u = 0.19285 + 1.42513I
a = 0.285158 + 0.831272I
b = 1.394710 + 0.010800I
2.84039 + 4.26517I 9.12872 4.11003I
u = 0.19285 1.42513I
a = 0.285158 0.831272I
b = 1.394710 0.010800I
2.84039 4.26517I 9.12872 + 4.11003I
u = 0.44395 + 1.37034I
a = 0.92880 1.52502I
b = 1.73382 + 0.33968I
6.95106 11.46670I 10.90832 + 5.56525I
u = 0.44395 1.37034I
a = 0.92880 + 1.52502I
b = 1.73382 0.33968I
6.95106 + 11.46670I 10.90832 5.56525I
u = 0.399508 + 0.267149I
a = 0.62991 1.27405I
b = 0.560771 + 0.285755I
3.37415 + 1.14100I 8.01557 6.01383I
u = 0.399508 0.267149I
a = 0.62991 + 1.27405I
b = 0.560771 0.285755I
3.37415 1.14100I 8.01557 + 6.01383I
u = 0.282112
a = 0.612831
b = 0.246723
0.514940 19.2240
7
II. I
u
2
= hb 1, 2u
2
a + a
2
2au + 4u
2
4a + 3u + 7, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
a
1
a
7
=
1
u
2
a
2
=
a + 1
1
a
1
=
1
0
a
5
=
a
1
a
11
=
u
u
2
u 1
a
8
=
u
2
+ 1
u
2
+ u + 1
a
10
=
u
2
1
u
2
u 1
a
4
=
u
2
+ 2a u 2
au
a
9
=
u
2
a + 4u
2
a + 5
u
2
a au + 2u
2
a + u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u 16
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
6
c
2
(u + 1)
6
c
3
, c
4
, c
8
c
9
(u
2
+ 2)
3
c
6
, c
7
(u
3
+ u
2
+ 2u + 1)
2
c
10
, c
12
(u
3
+ u
2
1)
2
c
11
(u
3
u
2
+ 2u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
6
c
3
, c
4
, c
8
c
9
(y + 2)
6
c
6
, c
7
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
10
, c
12
(y
3
y
2
+ 2y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.917744 0.191855I
b = 1.00000
6.31400 + 2.82812I 8.49024 2.97945I
u = 0.215080 + 1.307140I
a = 0.67262 + 1.68158I
b = 1.00000
6.31400 + 2.82812I 8.49024 2.97945I
u = 0.215080 1.307140I
a = 0.917744 + 0.191855I
b = 1.00000
6.31400 2.82812I 8.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.67262 1.68158I
b = 1.00000
6.31400 2.82812I 8.49024 + 2.97945I
u = 0.569840
a = 1.75488 + 1.87343I
b = 1.00000
2.17641 15.0200
u = 0.569840
a = 1.75488 1.87343I
b = 1.00000
2.17641 15.0200
11
III. I
u
3
= hb + 1, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
u
2
+ u 2
1
a
7
=
1
u
2
a
2
=
u
2
+ u 3
1
a
1
=
1
0
a
5
=
u
2
+ u 2
1
a
11
=
u
u
2
u + 1
a
8
=
u
2
+ 1
u
2
u + 1
a
10
=
u
2
+ 1
u
2
u + 1
a
4
=
u
2
+ u 2
1
a
9
=
u
2
+ 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
+ 4u 16
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
4
, c
8
c
9
u
3
c
5
(u + 1)
3
c
6
, c
7
u
3
u
2
+ 2u 1
c
10
, c
12
u
3
u
2
+ 1
c
11
u
3
+ u
2
+ 2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
3
c
3
, c
4
, c
8
c
9
y
3
c
6
, c
7
, c
11
y
3
+ 3y
2
+ 2y 1
c
10
, c
12
y
3
y
2
+ 2y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 1.00000
1.37919 2.82812I 11.81496 + 4.10401I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 1.00000
1.37919 + 2.82812I 11.81496 4.10401I
u = 0.569840
a = 1.75488
b = 1.00000
2.75839 14.3700
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
30
+ 42u
29
+ ··· + 4660u + 289)
c
2
((u 1)
3
)(u + 1)
6
(u
30
+ 4u
29
+ ··· + 28u 17)
c
3
, c
4
, c
9
u
3
(u
2
+ 2)
3
(u
30
u
29
+ ··· + 16u + 8)
c
5
((u 1)
6
)(u + 1)
3
(u
30
+ 4u
29
+ ··· + 28u 17)
c
6
, c
7
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
30
+ 2u
29
+ ··· 5u 3)
c
8
u
3
(u
2
+ 2)
3
(u
30
+ u
29
+ ··· 48u + 488)
c
10
, c
12
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
30
2u
29
+ ··· 17u 3)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
3
+ u
2
+ 2u + 1)(u
30
+ 2u
29
+ ··· 5u 3)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
30
98y
29
+ ··· 2.05608 × 10
7
y + 83521)
c
2
, c
5
((y 1)
9
)(y
30
42y
29
+ ··· 4660y + 289)
c
3
, c
4
, c
9
y
3
(y + 2)
6
(y
30
+ 23y
29
+ ··· 2304y
2
+ 64)
c
6
, c
7
, c
11
((y
3
+ 3y
2
+ 2y 1)
3
)(y
30
+ 24y
29
+ ··· 121y + 9)
c
8
y
3
(y + 2)
6
(y
30
61y
29
+ ··· + 989312y + 238144)
c
10
, c
12
((y
3
y
2
+ 2y 1)
3
)(y
30
40y
29
+ ··· 265y + 9)
17