12n
0479
(K12n
0479
)
A knot diagram
1
Linearized knot diagam
3 6 8 9 2 12 11 5 4 6 7 8
Solving Sequence
6,12 3,7
2 1 5 11 8 4 10 9
c
6
c
2
c
1
c
5
c
11
c
7
c
3
c
10
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h186488768414913u
49
290002817250832u
48
+ ··· + 308976956670931b + 23795142626938,
2.98208 × 10
14
u
49
+ 1.16633 × 10
15
u
48
+ ··· + 1.85386 × 10
15
a 3.97700 × 10
15
, u
50
2u
49
+ ··· + 7u 3i
I
u
2
= hb 1, 2u
2
a + a
2
2au + 4u
2
4a + 3u + 7, u
3
+ u
2
+ 2u + 1i
I
u
3
= hb + 1, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
* 3 irreducible components of dim
C
= 0, with total 59 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.86×10
14
u
49
2.90×10
14
u
48
+· · ·+3.09×10
14
b+2.38×10
13
, 2.98×
10
14
u
49
+1.17×10
15
u
48
+· · ·+1.85×10
15
a3.98×10
15
, u
50
2u
49
+· · ·+7u3i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
0.160858u
49
0.629138u
48
+ ··· 4.21769u + 2.14525
0.603569u
49
+ 0.938590u
48
+ ··· + 1.19866u 0.0770127
a
7
=
1
u
2
a
2
=
0.442711u
49
+ 0.309453u
48
+ ··· 3.01903u + 2.06824
0.603569u
49
+ 0.938590u
48
+ ··· + 1.19866u 0.0770127
a
1
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
5
=
0.0498473u
49
0.638746u
48
+ ··· + 5.09518u + 0.739281
0.316393u
49
+ 0.485397u
48
+ ··· + 2.60385u 0.176830
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
0.0589435u
49
0.198506u
48
+ ··· 4.62549u + 2.19124
0.738441u
49
+ 1.20164u
48
+ ··· + 1.08821u 0.149542
a
10
=
u
3
+ 2u
u
3
+ u
a
9
=
0.660432u
49
0.972483u
48
+ ··· 0.425785u + 2.52397
0.348382u
49
0.970681u
48
+ ··· 2.09905u + 1.98130
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
818278759941418
308976956670931
u
49
+
1283399787362471
308976956670931
u
48
+ ··· +
3241957768122858
308976956670931
u
3010107002943738
308976956670931
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
50
+ 18u
49
+ ··· + 4150u + 289
c
2
, c
5
u
50
+ 4u
49
+ ··· 28u 17
c
3
u
50
+ u
49
+ ··· + 1024u + 488
c
4
, c
8
, c
9
u
50
u
49
+ ··· 16u + 8
c
6
, c
7
, c
11
u
50
+ 2u
49
+ ··· 7u 3
c
10
, c
12
u
50
2u
49
+ ··· 3995u 2391
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
50
+ 38y
49
+ ··· + 3129458y + 83521
c
2
, c
5
y
50
18y
49
+ ··· 4150y + 289
c
3
y
50
41y
49
+ ··· 2344704y + 238144
c
4
, c
8
, c
9
y
50
+ 43y
49
+ ··· 896y + 64
c
6
, c
7
, c
11
y
50
+ 48y
49
+ ··· 79y + 9
c
10
, c
12
y
50
+ 16y
49
+ ··· + 33729737y + 5716881
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.548026 + 0.636865I
a = 0.141399 + 0.209810I
b = 1.031990 0.770119I
0.14665 + 5.50869I 5.48648 2.48413I
u = 0.548026 0.636865I
a = 0.141399 0.209810I
b = 1.031990 + 0.770119I
0.14665 5.50869I 5.48648 + 2.48413I
u = 0.747661 + 0.370902I
a = 1.27766 1.31418I
b = 1.119580 + 0.753217I
0.80164 9.94223I 7.39959 + 7.60109I
u = 0.747661 0.370902I
a = 1.27766 + 1.31418I
b = 1.119580 0.753217I
0.80164 + 9.94223I 7.39959 7.60109I
u = 0.701764 + 0.430117I
a = 1.00242 1.23319I
b = 0.971275 + 0.823552I
4.04082 + 5.32876I 2.84513 5.88571I
u = 0.701764 0.430117I
a = 1.00242 + 1.23319I
b = 0.971275 0.823552I
4.04082 5.32876I 2.84513 + 5.88571I
u = 0.613532 + 0.535693I
a = 0.370473 + 0.106254I
b = 0.839697 0.858575I
4.44373 0.93541I 1.58239 0.30026I
u = 0.613532 0.535693I
a = 0.370473 0.106254I
b = 0.839697 + 0.858575I
4.44373 + 0.93541I 1.58239 + 0.30026I
u = 0.680028 + 0.435043I
a = 0.548393 0.018507I
b = 0.600139 0.934400I
0.78344 3.70599I 5.05675 + 3.80006I
u = 0.680028 0.435043I
a = 0.548393 + 0.018507I
b = 0.600139 + 0.934400I
0.78344 + 3.70599I 5.05675 3.80006I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.609239 + 0.505071I
a = 0.659368 1.086520I
b = 0.728352 + 0.857268I
1.077150 0.581801I 4.57087 + 2.28469I
u = 0.609239 0.505071I
a = 0.659368 + 1.086520I
b = 0.728352 0.857268I
1.077150 + 0.581801I 4.57087 2.28469I
u = 0.314558 + 1.181770I
a = 0.755396 + 0.911108I
b = 0.883202 0.570553I
1.86240 + 5.95457I 0
u = 0.314558 1.181770I
a = 0.755396 0.911108I
b = 0.883202 + 0.570553I
1.86240 5.95457I 0
u = 0.754187 + 0.037133I
a = 1.177820 + 0.351943I
b = 0.791193 + 0.522358I
5.37048 2.06528I 9.77366 + 3.43997I
u = 0.754187 0.037133I
a = 1.177820 0.351943I
b = 0.791193 0.522358I
5.37048 + 2.06528I 9.77366 3.43997I
u = 0.030213 + 1.260010I
a = 0.22647 + 1.85610I
b = 1.111340 0.290888I
3.90026 + 0.44346I 0
u = 0.030213 1.260010I
a = 0.22647 1.85610I
b = 1.111340 + 0.290888I
3.90026 0.44346I 0
u = 0.251247 + 1.259910I
a = 0.547258 + 0.656638I
b = 0.684570 0.219108I
2.05074 3.33048I 0
u = 0.251247 1.259910I
a = 0.547258 0.656638I
b = 0.684570 + 0.219108I
2.05074 + 3.33048I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.299311 + 1.263120I
a = 0.021398 + 0.222536I
b = 0.705583 + 0.479463I
1.35085 + 1.74111I 0
u = 0.299311 1.263120I
a = 0.021398 0.222536I
b = 0.705583 0.479463I
1.35085 1.74111I 0
u = 0.095422 + 1.324880I
a = 0.023038 + 1.203270I
b = 1.169140 0.223723I
1.85552 + 1.71056I 0
u = 0.095422 1.324880I
a = 0.023038 1.203270I
b = 1.169140 + 0.223723I
1.85552 1.71056I 0
u = 0.667644
a = 1.23502
b = 0.589141
1.84778 2.14880
u = 0.179331 + 1.371620I
a = 1.20289 1.64393I
b = 0.538230 + 0.405630I
1.78664 + 3.49510I 0
u = 0.179331 1.371620I
a = 1.20289 + 1.64393I
b = 0.538230 0.405630I
1.78664 3.49510I 0
u = 0.523052 + 0.312664I
a = 1.58769 + 0.98505I
b = 1.278040 + 0.059074I
5.97365 1.50019I 9.06126 + 4.58058I
u = 0.523052 0.312664I
a = 1.58769 0.98505I
b = 1.278040 0.059074I
5.97365 + 1.50019I 9.06126 4.58058I
u = 0.062298 + 1.409670I
a = 0.212165 1.347970I
b = 0.181198 + 0.793511I
5.34369 2.04364I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.062298 1.409670I
a = 0.212165 + 1.347970I
b = 0.181198 0.793511I
5.34369 + 2.04364I 0
u = 0.20226 + 1.41029I
a = 0.244900 + 0.806956I
b = 1.348940 + 0.042324I
0.46882 4.20038I 0
u = 0.20226 1.41029I
a = 0.244900 0.806956I
b = 1.348940 0.042324I
0.46882 + 4.20038I 0
u = 0.478945 + 0.205762I
a = 1.01707 2.37277I
b = 0.767299 + 0.234309I
6.81379 + 1.04376I 7.43326 6.78776I
u = 0.478945 0.205762I
a = 1.01707 + 2.37277I
b = 0.767299 0.234309I
6.81379 1.04376I 7.43326 + 6.78776I
u = 0.28571 + 1.46065I
a = 0.22222 2.14370I
b = 1.175840 + 0.774815I
5.0883 13.7071I 0
u = 0.28571 1.46065I
a = 0.22222 + 2.14370I
b = 1.175840 0.774815I
5.0883 + 13.7071I 0
u = 0.24689 + 1.47668I
a = 1.12288 + 0.98727I
b = 0.577120 1.045150I
6.96288 7.09069I 0
u = 0.24689 1.47668I
a = 1.12288 0.98727I
b = 0.577120 + 1.045150I
6.96288 + 7.09069I 0
u = 0.21123 + 1.48331I
a = 0.10979 1.94214I
b = 0.854567 + 0.927257I
7.49634 3.56090I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.21123 1.48331I
a = 0.10979 + 1.94214I
b = 0.854567 0.927257I
7.49634 + 3.56090I 0
u = 0.25705 + 1.47829I
a = 0.06564 2.05483I
b = 1.058610 + 0.870913I
10.20760 + 8.82997I 0
u = 0.25705 1.47829I
a = 0.06564 + 2.05483I
b = 1.058610 0.870913I
10.20760 8.82997I 0
u = 0.15233 + 1.49913I
a = 1.01986 + 1.15371I
b = 0.992952 0.891101I
7.08236 + 3.11695I 0
u = 0.15233 1.49913I
a = 1.01986 1.15371I
b = 0.992952 + 0.891101I
7.08236 3.11695I 0
u = 0.20291 + 1.49495I
a = 1.08852 + 1.06865I
b = 0.799853 0.997275I
11.03000 + 2.01018I 0
u = 0.20291 1.49495I
a = 1.08852 1.06865I
b = 0.799853 + 0.997275I
11.03000 2.01018I 0
u = 0.275380 + 0.327909I
a = 0.267865 0.801075I
b = 0.330232 + 0.361285I
0.199328 0.932041I 3.89641 + 7.43641I
u = 0.275380 0.327909I
a = 0.267865 + 0.801075I
b = 0.330232 0.361285I
0.199328 + 0.932041I 3.89641 7.43641I
u = 0.403899
a = 2.57601
b = 1.10270
2.29285 3.34720
9
II. I
u
2
= hb 1, 2u
2
a + a
2
2au + 4u
2
4a + 3u + 7, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
a
1
a
7
=
1
u
2
a
2
=
a + 1
1
a
1
=
1
0
a
5
=
a
1
a
11
=
u
u
2
u 1
a
8
=
u
2
+ 1
u
2
+ u + 1
a
4
=
u
2
+ u + 2
au + 2
a
10
=
u
2
1
u
2
u 1
a
9
=
u
2
a 2u
2
+ a 3
u
2
a + au + a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
4u 16
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
6
c
2
(u + 1)
6
c
3
, c
4
, c
8
c
9
(u
2
+ 2)
3
c
6
, c
7
(u
3
+ u
2
+ 2u + 1)
2
c
10
, c
12
(u
3
+ u
2
1)
2
c
11
(u
3
u
2
+ 2u 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
6
c
3
, c
4
, c
8
c
9
(y + 2)
6
c
6
, c
7
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
10
, c
12
(y
3
y
2
+ 2y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.917744 0.191855I
b = 1.00000
3.55561 + 2.82812I 8.49024 2.97945I
u = 0.215080 + 1.307140I
a = 0.67262 + 1.68158I
b = 1.00000
3.55561 + 2.82812I 8.49024 2.97945I
u = 0.215080 1.307140I
a = 0.917744 + 0.191855I
b = 1.00000
3.55561 2.82812I 8.49024 + 2.97945I
u = 0.215080 1.307140I
a = 0.67262 1.68158I
b = 1.00000
3.55561 2.82812I 8.49024 + 2.97945I
u = 0.569840
a = 1.75488 + 1.87343I
b = 1.00000
7.69319 15.0200
u = 0.569840
a = 1.75488 1.87343I
b = 1.00000
7.69319 15.0200
13
III. I
u
3
= hb + 1, u
2
+ a u + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
3
=
u
2
+ u 2
1
a
7
=
1
u
2
a
2
=
u
2
+ u 3
1
a
1
=
1
0
a
5
=
u
2
+ u 2
1
a
11
=
u
u
2
u + 1
a
8
=
u
2
+ 1
u
2
u + 1
a
4
=
u
2
+ u 2
1
a
10
=
u
2
+ 1
u
2
u + 1
a
9
=
u
2
+ 1
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
2
+ 4u 16
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
4
, c
8
c
9
u
3
c
5
(u + 1)
3
c
6
, c
7
u
3
u
2
+ 2u 1
c
10
, c
12
u
3
u
2
+ 1
c
11
u
3
+ u
2
+ 2u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
(y 1)
3
c
3
, c
4
, c
8
c
9
y
3
c
6
, c
7
, c
11
y
3
+ 3y
2
+ 2y 1
c
10
, c
12
y
3
y
2
+ 2y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.122561 + 0.744862I
b = 1.00000
1.37919 2.82812I 5.16553 + 1.85489I
u = 0.215080 1.307140I
a = 0.122561 0.744862I
b = 1.00000
1.37919 + 2.82812I 5.16553 1.85489I
u = 0.569840
a = 1.75488
b = 1.00000
2.75839 15.6690
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
50
+ 18u
49
+ ··· + 4150u + 289)
c
2
((u 1)
3
)(u + 1)
6
(u
50
+ 4u
49
+ ··· 28u 17)
c
3
u
3
(u
2
+ 2)
3
(u
50
+ u
49
+ ··· + 1024u + 488)
c
4
, c
8
, c
9
u
3
(u
2
+ 2)
3
(u
50
u
49
+ ··· 16u + 8)
c
5
((u 1)
6
)(u + 1)
3
(u
50
+ 4u
49
+ ··· 28u 17)
c
6
, c
7
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
50
+ 2u
49
+ ··· 7u 3)
c
10
, c
12
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
50
2u
49
+ ··· 3995u 2391)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
3
+ u
2
+ 2u + 1)(u
50
+ 2u
49
+ ··· 7u 3)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
50
+ 38y
49
+ ··· + 3129458y + 83521)
c
2
, c
5
((y 1)
9
)(y
50
18y
49
+ ··· 4150y + 289)
c
3
y
3
(y + 2)
6
(y
50
41y
49
+ ··· 2344704y + 238144)
c
4
, c
8
, c
9
y
3
(y + 2)
6
(y
50
+ 43y
49
+ ··· 896y + 64)
c
6
, c
7
, c
11
((y
3
+ 3y
2
+ 2y 1)
3
)(y
50
+ 48y
49
+ ··· 79y + 9)
c
10
, c
12
((y
3
y
2
+ 2y 1)
3
)(y
50
+ 16y
49
+ ··· + 3.37297 × 10
7
y + 5716881)
19